COLLEGE PHYSICS
COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 19, Problem 70QAP
To determine

(a)

The magnitude of magnetic field at y =0 cm according to the adapted coordinate system

Expert Solution
Check Mark

Answer to Problem 70QAP

The magnitude of the magnetic field at (y =0 cm) = 0 T

Or in other words there is no magnetic field at y= 0 cm

Explanation of Solution

Given:

Two long straight wires are positioned such that they are parallel to x at y=2.5 cm and y= -2.5 cm as shown in the diagram below. Each wire carries a current of 16 A.

Formula used:

  B=μ0i2πr(a)where B= Magnitude of the magentic field due to a long, straight wireμ0= permeability of free spacer = distance from the wire to the location where the field is measured

Right hand rule for the field directionIf you point your right thumb in the direction of the current and curl your fingers, the magnetic field curls around the field lines in the direction of the curled fingers of your right hand.

Calculation:

One can make use of the superposition to calculate the magnitude of the magnetic field at designated location of the y axis.

Let us denote the magnitude of the magnetic field generated by the top wire as Btopand the magnetic field generated by the wire below as Bbottom.

Applying the right hand rule one could clearly see that Btop acts in the -z direction while Bbottomacts in the +z direction.

Let B= total magnitude of the magnetic field at y=0 cm

Then B = Btop + Bbottom

Substituting for equation (a) we could find B as follows where rtop= distance from the top wire to y=0 and rbottom= distance from the bottom wire to y=0.

  B = ( μ 0i2π r top) + ( μ 0i2π r bottom)B =( μ 0i2π){1r top + 1r bottom}rtop=rbottom=2.5 cm = 0.025m ;B=( μ 0i2π){10.025 m + 10.025 m}B=0T

Conclusion:

The magnitude of the magnetic field at (y =0 cm) = 0 T

Or in other words there is no magnetic field at y= 0 cm

To determine

(b)

The magnitude of magnetic field at y = 1.0 cm according to the adapted coordinate system

Expert Solution
Check Mark

Answer to Problem 70QAP

The magnitude of the magnetic field at (y =1.0 cm) = (-1.2 x 10-4)T

Explanation of Solution

Given:

Two long straight wires are positioned such that they are parallel to x at y=2.5 cm and y= -2.5 cm as shown in the diagram below. Each wire carries a current of 16 A.

Calculation:

One can make use of the superposition to calculate the magnitude of the magnetic field at designated location of the y axis.

Let us denote the magnitude of the magnetic field generated by the top wire as Btopand the magnetic field generated by the wire below as Bbottom.

Applying the right handrule, one could clearly see that Btop acts in the -z direction while Bbottomacts in the +z direction.

Let B= total magnitude of the magnetic field at y=1.0 cm

Then B = Btop + Bbottom

Substituting for equation (a) we could find B as follows where rtop= distance from the topwire to y=1.0cm and rbottom= distance from the bottom wire to y=1.0 cm.

  B = ( μ 0i2π r top) + ( μ 0i2π r bottom)B =( μ 0i2π){1r top + 1r bottom}rtop=1.5 cm = 0.015 m  and rbottom=3.5 cm = 0.035 mB=( μ 0i2π){10.015 m + 10.035 m}B =((4π× 10 7 T.m A)×(16A)2π){10.015 m + 10.035 m}B = (-1.2 ×104) T 

Conclusion:

The magnitude of the magnetic field at (y =1.0 cm) = (-1.2 x 10-4)T

To determine

(c)

The magnitude of magnetic field at y = 4.0 cm according to the adapted coordinate system

Expert Solution
Check Mark

Answer to Problem 70QAP

The magnitude of the magnetic field at (y =4.0 cm) = (2.6 x 10-4)T

Explanation of Solution

Given:

Two long straight wires are positioned such that they are parallel to x at y=2.5 cm and y= -2.5 cm as shown in the diagram below. Each wire carries a current of 16 A.

Calculation:

One can make use of the superposition to calculate the magnitude of the magnetic field at designated location of the y axis.

Let us denote the magnitude of the magnetic field generated by the top wire as Btopand the magnetic field generated by the wire below as Bbottom.

Applying the right hand rule, one could clearly see that Btop acts in the +z direction while Bbottomalso acts in the +z direction.

Let B= total magnitude of the magnetic field at y=4.0 cm

Then B = Btop + Bbottom

Substituting for equation (a) we could find B as follows where rtop= distance from the top wire to y=4.0cm and rbottom= distance from the bottom wire to y=4.0 cm.

  B = ( μ 0i2π r top) + ( μ 0i2π r bottom)B =( μ 0i2π){1r top + 1r bottom}rtop=1.5 cm = 0.015 m  and rbottom=6.5 cm = 0.065 mB=( μ 0i2π){10.015 m + 10.065 m}B =((4π× 10 7 T.m A)×(16A)2π){10.015 m + 10.065 m}B = (2.6 ×104) T 

Conclusion:

The magnitude of the magnetic field at (y =4.0 cm) = (2.6 x 10-4)T

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
search P(QP) Q 1.-P:PR 2.-QP:PR 3. Q:MT 1, 2 4. Q:DNE 3 Submit 4.5 P. (QP) Q 1. P: PR 2. Q-P PR 3. -Q:AS 4. -P:MP 2, 3 5. Submit 17 A Previous Chapter Next Chapter
4.8^2^x^+1=32^x^+2
Solve them

Chapter 19 Solutions

COLLEGE PHYSICS

Ch. 19 - Prob. 11QAPCh. 19 - Prob. 12QAPCh. 19 - Prob. 13QAPCh. 19 - Prob. 14QAPCh. 19 - Prob. 15QAPCh. 19 - Prob. 16QAPCh. 19 - Prob. 17QAPCh. 19 - Prob. 18QAPCh. 19 - Prob. 19QAPCh. 19 - Prob. 20QAPCh. 19 - Prob. 21QAPCh. 19 - Prob. 22QAPCh. 19 - Prob. 23QAPCh. 19 - Prob. 24QAPCh. 19 - Prob. 25QAPCh. 19 - Prob. 26QAPCh. 19 - Prob. 27QAPCh. 19 - Prob. 28QAPCh. 19 - Prob. 29QAPCh. 19 - Prob. 30QAPCh. 19 - Prob. 31QAPCh. 19 - Prob. 32QAPCh. 19 - Prob. 33QAPCh. 19 - Prob. 34QAPCh. 19 - Prob. 35QAPCh. 19 - Prob. 36QAPCh. 19 - Prob. 37QAPCh. 19 - Prob. 38QAPCh. 19 - Prob. 39QAPCh. 19 - Prob. 40QAPCh. 19 - Prob. 41QAPCh. 19 - Prob. 42QAPCh. 19 - Prob. 43QAPCh. 19 - Prob. 44QAPCh. 19 - Prob. 45QAPCh. 19 - Prob. 46QAPCh. 19 - Prob. 47QAPCh. 19 - Prob. 48QAPCh. 19 - Prob. 49QAPCh. 19 - Prob. 50QAPCh. 19 - Prob. 51QAPCh. 19 - Prob. 52QAPCh. 19 - Prob. 53QAPCh. 19 - Prob. 54QAPCh. 19 - Prob. 55QAPCh. 19 - Prob. 56QAPCh. 19 - Prob. 57QAPCh. 19 - Prob. 58QAPCh. 19 - Prob. 59QAPCh. 19 - Prob. 60QAPCh. 19 - Prob. 61QAPCh. 19 - Prob. 62QAPCh. 19 - Prob. 63QAPCh. 19 - Prob. 64QAPCh. 19 - Prob. 65QAPCh. 19 - Prob. 66QAPCh. 19 - Prob. 67QAPCh. 19 - Prob. 68QAPCh. 19 - Prob. 69QAPCh. 19 - Prob. 70QAPCh. 19 - Prob. 71QAPCh. 19 - Prob. 72QAPCh. 19 - Prob. 73QAPCh. 19 - Prob. 74QAPCh. 19 - Prob. 75QAPCh. 19 - Prob. 76QAPCh. 19 - Prob. 77QAPCh. 19 - Prob. 78QAPCh. 19 - Prob. 79QAPCh. 19 - Prob. 80QAPCh. 19 - Prob. 81QAPCh. 19 - Prob. 82QAPCh. 19 - Prob. 83QAPCh. 19 - Prob. 84QAPCh. 19 - Prob. 85QAPCh. 19 - Prob. 86QAP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
Text book image
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Text book image
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY