
EBK COLLEGE PHYSICS
2nd Edition
ISBN: 9780134605500
Author: ETKINA
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 19, Problem 6RQ
Review Question 19.6 Eugenia says that the power of an electric device is directly proportional to its resistance; Alan says it is inversely proportional. Who do you agree with and why?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
This one wheeled motorcycle’s wheel maximum angular velocity was about 430 rev/min. Given that it’s radius was 0.920 m, what was the largest linear velocity of the monowheel?The monowheel could not accelerate fast or the rider would start spinning inside (this is called "gerbiling"). The maximum angular acceleration was 10.9 rad/s2. How long, in seconds, would it take it to hit maximum speed from rest?
If points a and b are connected by a wire with negligible resistance, find the magnitude of the current in the 12.0 V battery.
Consider the two pucks shown in the figure. As they move towards each other, the momentum of each puck is equal in magnitude and opposite in direction. Given that v
kinetic energy of the system is converted to internal energy?
30.0°
130.0
=
green
11.0 m/s, and m blue is 25.0% greater than m
'green'
what are the final speeds of each puck (in m/s), if 1½-½ t
the
Chapter 19 Solutions
EBK COLLEGE PHYSICS
Ch. 19 - Review Question 19.1 What condition(s) is/are...Ch. 19 - Review Question 19.2 Describe the changes in...Ch. 19 - Review Question 19.3 Explain the meaning of the...Ch. 19 - Review Question 19.4 Why does it make sense that...Ch. 19 - Review Question 19.5 What experimental evidence...Ch. 19 - Review Question 19.6 Eugenia says that the power...Ch. 19 - Review Question 19.7 Where is the electric...Ch. 19 - Review Question 19.8 Rank the four identical bulbs...Ch. 19 - Review Question 19.9 What does it mean when you...Ch. 19 - Review Question 19.10 Why does the resistance of a...
Ch. 19 - Two identical bulbs are connected on parallel...Ch. 19 - Compare the potential difference across bulbs 1...Ch. 19 - Two identical bulbs are in series as shown in...Ch. 19 - 4. Which statement below about the potential...Ch. 19 - Three circuits with identical bulbs and emf...Ch. 19 - 6. Rank in order the potential differences across...Ch. 19 - 7. Rank in order the five identical bulbs in the...Ch. 19 - Four identical bulbs are shown in the circuit in...Ch. 19 - Four identical bulbs are shown in the circuit in...Ch. 19 - Consider the circuit in Figure Q19.10. The switch...Ch. 19 - 11. Figure Q19.1 shows graphs for an incandescent...Ch. 19 - If an electric current were due to electrons...Ch. 19 - 13. Three light sources (a lightbulb, a blue LED ...Ch. 19 - What is the role of a battery in an electric...Ch. 19 - 16. Compare and contrast the physical quantities...Ch. 19 - Birds on high power lines Why can birds perch on a...Ch. 19 - 18. Preventing electric shock When a person is...Ch. 19 - (a) Using a voltmeter, how can you determine the...Ch. 19 - (a) What does it mean if the current through a...Ch. 19 - 21. Resistors become warm when there is an...Ch. 19 - At one time aluminum rather than copper wires were...Ch. 19 - 23. How do you connect an ammeter in a circuit to...Ch. 19 - Why do we connect electric devices in a home in...Ch. 19 - 26. Construct an electric circuit that is...Ch. 19 - 27. Most Christmas tree lights with incandescent...Ch. 19 - 28. Two students are arguing. Student A says that...Ch. 19 - Use the laws of energy and charge conservation to...Ch. 19 - When you close the switch in the circuit in Figure...Ch. 19 - 1. A bulb in a table lamp has a current of 0.50 A...Ch. 19 - A long wire is connected to the terminals of a...Ch. 19 - A typical flashlight battery will produce a 0.50-A...Ch. 19 - 4. * Four friends each have a battery, a bulb, and...Ch. 19 - 5. Draw a circuit that has a battery, a lightbulb,...Ch. 19 - Add another battery to the circuit described in...Ch. 19 - Add another lightbulb to the circuit with one...Ch. 19 - A 9.0-V battery is connected to a resistor so that...Ch. 19 - 10. * A graph of the electric potential versus...Ch. 19 - 11. Sketch a potential-versus-location graph for...Ch. 19 - 12. Bio Electric currents in the body A person...Ch. 19 - 13. An automobile lightbulb has a 1.0-A current...Ch. 19 - * If a long wire is connected to the terminals of...Ch. 19 - Determine the current through a 2.5- resistor when...Ch. 19 - 16. * You have a circuit with a 50-Ω, a 100- Ω,...Ch. 19 - You have a circuit with a 50-, a 100- , and a 150-...Ch. 19 - 18. * A toy has two red LEDs (), two green LEDs...Ch. 19 - * You want to power a green LED (VOpenG=2.1V) and...Ch. 19 - 20. * A circuit consists of a green LED and a ...Ch. 19 - 21. * You connect a 50-Ω resistor to a 9-V battery...Ch. 19 - 22. * EST Making tea You use an electric teapot to...Ch. 19 - * If a long wire is connected to the terminals of...Ch. 19 - ** Three friends are arguing with each other. Adam...Ch. 19 - 25. * You have a 40-W lightbulb and a 100-W bulb....Ch. 19 - * Does a 60-W lightbulb have more or less...Ch. 19 - 27. * (a) Write two loop rule equations and one...Ch. 19 - 28. * (a) Write Kirchhoff's loop rule for the...Ch. 19 - 29. * Repeat parts (a) and (b) of the previous...Ch. 19 - * (a) Determine the value of 1 so that there is a...Ch. 19 - 31. ** The current through resistor in Figure...Ch. 19 - andR3 shown in Figure P19.27 satisfy the relation...Ch. 19 - 33. * (a) Write the loop rule for two different...Ch. 19 - 34. ** Determine the value of , shown in Figure...Ch. 19 - * Determine (a) the equivalent resistance of...Ch. 19 - 36. (a) Determine the equivalent resistance of...Ch. 19 - 37. * Determine the equivalent resistance of the...Ch. 19 - * Determine (a) the equivalent resistance of the...Ch. 19 - You close the switch in the circuit in Figure...Ch. 19 - * You close the switch in the circuit in Figure...Ch. 19 - 42. * Home wiring A simplified electrical circuit...Ch. 19 - 43. ** (a) Write Kirchhoff's rules for two loops...Ch. 19 - of internal resistance. Because each row has the...Ch. 19 - 45. Home wiring A 120-V electrical line m a home...Ch. 19 - * Tree lights Nine tree lights are connected m...Ch. 19 - 47. * Two lightbulbs use 30 W and 60 W,...Ch. 19 - * Three identical resistors, when connected in...Ch. 19 - . (a) Determine the power delivered to a resistor...Ch. 19 - * Determine the equivalent resistance of the...Ch. 19 - 51 toI4 from largest to smallest Assume all wires...Ch. 19 - Figure P19.52 shows a real circuit that consists...Ch. 19 - * A 100-m-long copper wire of radius 0.12 mm and...Ch. 19 - 54. * BMT subway rail resistance The BMT subway...Ch. 19 - * Thermometer A platinum resistance thermometer...Ch. 19 - As the potential difference in volts across a thin...Ch. 19 - 57. * BIO Respiration detector A respiration...Ch. 19 - * A wire whose resistance is R is stretched so...Ch. 19 - 59. * Ratio reasoning Determine the ratio of the...Ch. 19 - ** Electronics detective You need to determine the...Ch. 19 - 61. * A battery produces a 2.0-A current when...Ch. 19 - 62. * Resistance of human nerve cell Some human...Ch. 19 - 63. * Conductive textiles Metal strands can be...Ch. 19 - 64. * EST Figure P19.64 shows an I-versus-V graph...Ch. 19 - * EST Figure P19.64 shows an I-versus- V graph for...Ch. 19 - *EST Figure P19.64 shows an I-versus- V graph for...Ch. 19 - * Wiring high-fidelity speakers Your high-fidelity...Ch. 19 - 68 * BIO EST Lifting forearm by electric current...Ch. 19 - 69. * EST Switches You have a power supply, a 10-W...Ch. 19 - ** Wiring a staircase Devise an electric circuit...Ch. 19 - 72. ** EST Electric water heater An electric hot...Ch. 19 - 73. ** BIO EST The hands and arms as a conductor...Ch. 19 - 75. * A nickel wire of length L and a voltmeter...Ch. 19 - ** Solve the previous problem if the internal...Ch. 19 - * EST Figure P19.77 shows an | I | -versus-V graph...Ch. 19 - VI a. Connect a voltmeter to a batterys terminals....Ch. 19 - equaled the number of electrons passing a cross...Ch. 19 - 80. * A 5.0-A current caused by moving electrons...Ch. 19 - 81. ** BIO Current across membrane wall of axon An...Ch. 19 - BIO Signals in nerve cells stimulate muscles The...Ch. 19 - BIO Signals in nerve cells stimulate muscles The...Ch. 19 - BIO Signals in nerve cells stimulate muscles The...Ch. 19 - BIO Signals in nerve cells stimulate muscles The...Ch. 19 - 86. The horizontal 4-Ω resistors in the two...Ch. 19 - 87. Suppose nerve impulses travel at 100 m/s in...Ch. 19 - BIO Effect of electric current on human body Nerve...Ch. 19 - BIO Effect of electric current on human body Nerve...Ch. 19 - BIO Effect of electric current on human body Nerve...Ch. 19 - BIO Effect of electric current on human body Nerve...Ch. 19 - BIO Effect of electric current on human body Nerve...Ch. 19 - BIO Effect of electric current on human body Nerve...Ch. 19 - BIO Effect of electric current on human body Nerve...
Additional Science Textbook Solutions
Find more solutions based on key concepts
You have isolated (1) a streptomycin-resistant mutant (strR) of Chlamydomonas that maps to the chloroplast geno...
Genetic Analysis: An Integrated Approach (3rd Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
4. The object for a magnifier is usually placed very close to the focal point of the lens, creating a virtual i...
College Physics: A Strategic Approach (3rd Edition)
MAKE CONNECTIONS Using what you know of gene expression in a cell, explain what causes the traits of parents (...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the blocks on the curved ramp as seen in the figure. The blocks have masses m₁ = 2.00 kg and m₂ = 3.60 kg, and are initially at rest. The blocks are allowed to slide down the ramp and they then undergo a head-on, elastic collision on the flat portion. Determine the heights (in m) to which m₁ and m2 rise on the curved portion of the ramp after the collision. Assume the ramp is frictionless, and h 4.40 m. m2 = m₁ m hm1 hm2 m iarrow_forwardA 3.04-kg steel ball strikes a massive wall at 10.0 m/s at an angle of 0 = 60.0° with the plane of the wall. It bounces off the wall with the same speed and angle (see the figure below). If the ball is in contact with the wall for 0.234 s, what is the average force exerted by the wall on the ball? magnitude direction ---Select--- ✓ N xarrow_forwardYou are in the early stages of an internship at NASA. Your supervisor has asked you to analyze emergency procedures for extravehicular activity (EVA), when the astronauts leave the International Space Station (ISS) to do repairs to its exterior or perform other tasks. In particular, the scenario you are studying is a failure of the manned-maneuvering unit (MMU), which is a nitrogen-propelled backpack that attaches to the astronaut's primary life support system (PLSS). In this scenario, the astronaut is floating directly away from the ISS and cannot use the failed MMU to get back. Therefore, the emergency plan is to take off the MMU and throw it in a direction directly away from the ISS, an action that will hopefully cause the astronaut to reverse direction and float back to the station. You have the following mass data provided to you: astronaut: 78.1 kg, spacesuit: 36.8 kg, MMU: 115 kg, PLSS: 145 kg. Based on tests performed by astronauts floating "weightless" inside the ISS, the most…arrow_forward
- Three carts of masses m₁ = 4.50 kg, m₂ = 10.50 kg, and m3 = 3.00 kg move on a frictionless, horizontal track with speeds of V1 v1 13 m 12 mq m3 (a) Find the final velocity of the train of three carts. magnitude direction m/s |---Select--- ☑ (b) Does your answer require that all the carts collide and stick together at the same moment? ○ Yes Ο Νο = 6.00 m/s to the right, v₂ = 3.00 m/s to the right, and V3 = 6.00 m/s to the left, as shown below. Velcro couplers make the carts stick together after colliding.arrow_forwardA girl launches a toy rocket from the ground. The engine experiences an average thrust of 5.26 N. The mass of the engine plus fuel before liftoff is 25.4 g, which includes fuel mass of 12.7 g. The engine fires for a total of 1.90 s. (Assume all the fuel is consumed.) (a) Calculate the average exhaust speed of the engine (in m/s). m/s (b) This engine is positioned in a rocket body of mass 70.0 g. What is the magnitude of the final velocity of the rocket (in m/s) if it were to be fired from rest in outer space with the same amount of fuel? Assume the fuel burns at a constant rate. m/sarrow_forwardTwo objects of masses m₁ 0.48 kg and m₂ = 0.86 kg are placed on a horizontal frictionless surface and a compressed spring of force constant k 260 N/m is placed between them as in figure (a). Neglect the mass of the spring. The spring is not attached to either object and is compressed a distance of 9.4 cm. If the objects are released from rest, find the final velocity of each object as shown in figure (b). (Let the positive direction be to the right. Indicate the direction with the sign of your answer.) m/s V1 V2= m1 m/s k m2 a す。 k m2 m1 barrow_forward
- Sand from a stationary hopper falls on a moving conveyor belt at the rate of 4.90 kg/s as shown in the figure below. The conveyor belt is supported by frictionless rollers and moves at a constant speed of v = 0.710 m/s under the action of a constant horizontal external force F by the motor that drives the belt. Fext i (a) Find the sand's rate of change of momentum in the horizontal direction. (b) Find the force of friction exerted by the belt on the sand. (c) Find the external force ext' (d) Find the work done by F in 1 s. ext (e) Find the kinetic energy acquired by the falling sand each second due to the change in its horizontal motion. ext suppliedarrow_forwardAn unstable atomic nucleus of mass 1.84 × 10-26 kg initially at rest disintegrates into three particles. One of the particles, of mass 5.14 × 10-27 kg, moves in the y direction with a speed of 6.00 × 106 m/s. Another particle, of mass 8.46 × 10-27 kg, moves in the x direction with a speed of 4.00 x 106 m/s. (a) Find the velocity of the third particle. |Î + i) m/s (b) Find the total kinetic energy increase in the process. ]arrow_forwardTwo gliders are set in motion on an air track. A light spring of force constant k is attached to the back end of the second glider. As shown in the figure below, the first glider, of mass m₁, moves to the right with a speed V₁, and the second glider, of mass m₂, moves more slowly to the right with a speed, V2. VI m2 i When m₁ collides with the spring attached to m2, the spring compresses by a distance xmax, and the gliders then move apart again. In terms of V1, V2, m₁, m2, and k, find the following. (Use any variable or symbol stated above as necessary.) (a) speed v at maximum compression V = (b) the maximum compression Xmax Xmax = (c) the speed of each glider after m₁ V1f = has lost contact with the spring (Use any variable or symbol stated above as necessary.) V2farrow_forward
- As shown below, a bullet of mass m and speed v is fired at an initially stationary pendulum bob. The bullet goes through the bob, and exits with a speed of pendulum bob will barely swing through a complete vertical circle? (Use the following as necessary: m, L, g, and M for the mass of the bob.) 2 The pendulum bob is attached to a rigid pole of length L and negligible mass. What is the minimum value of v such that the V = L m M v/2 iarrow_forwardAs shown in the figure, a billiard ball with mass m₂ is initially at rest on a horizontal, frictionless table. A second billiard ball with mass m₁ moving with a speed 2.00 m/s, collides with m2. Assume m₁ moves initially along the +x-axis. After the collision, m₁ moves with speed 1.00 m/s at an angle of 0 = 48.0° to the positive x-axis. (Assume m₁ = 0.200 kg and m₂ = 0.300 kg.) m₁ Before the collision Vli After the collision Mi sin 9 Jif "If cos Vof COS U2f sin o Mo b (a) Determine the speed (in m/s) of the 0.300 kg ball after the collision. m/s (b) Find the fraction of kinetic energy transferred away or transformed to other forms of energy in the collision. |AKI K;arrow_forwardA block with mass m₁ = 0.600 kg is released from rest on a frictionless track at a distance h₁ = 2.55 m above the top of a table. It then collides elastically with an object having mass m₂ = 1.20 kg that is initially at rest on the table, as shown in the figure below. h₁ իջ m m2 (a) Determine the velocities of the two objects just after the collision. (Assume the positive direction is to the right. Indicate the direction with the signs of your answers.) V1= m/s m/s (b) How high up the track does the 0.600-kg object travel back after the collision? m (c) How far away from the bottom of the table does the 1.20-kg object land, given that the height of the table is h₂ = 1.75 m? m (d) How far away from the bottom of the table does the 0.600-kg object eventually land? marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning


College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Domestic Electric Circuits; Author: PrepOnGo Class 10 & 12;https://www.youtube.com/watch?v=2ZvWaloQ3nk;License: Standard YouTube License, CC-BY