(a)
Interpretation:
The Resonance structure of the sigma complex of ortho, para, meta position of given following compound should be explained.
Concept Introduction:
- Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in
aromatic compounds . Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
- Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction.
- The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
- If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
- If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
- Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through
alkyl halides oralkenes.
(b)
Interpretation:
The Resonance structure of the sigma complex of ortho, para, meta position of given following compound should be explained.
Concept Introduction:
- Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
- Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction.
- The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
- If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
- If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
- Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through alkyl halides or alkenes.
(c)
Interpretation:
The Resonance structure of the sigma complex of ortho, para, meta position of given following compound should be explained.
Concept Introduction:
- Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
- Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction.
- The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
- If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
- If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
- Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through alkyl halides or alkenes.
(d)
Interpretation:
The Resonance structure of the sigma complex of ortho, para, meta position of given following compound should be explained.
Concept Introduction:
- Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
- Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction.
- The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
- If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
- If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
- Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through alkyl halides or alkenes.
(e)
Interpretation:
The Resonance structure of the sigma complex of ortho, para, meta position of given following compound should be explained.
Concept Introduction:
- Electrophiles are electron deficient species. In Electrophilic substitution reaction a group or atom in a compound is replaced by electrophile. This kind of reaction occurs predominantly in aromatic compounds. Electrophilic substitution reactions of aromatic compounds are known as aromatic electrophilic substitution reactions.
- Benzene is an electron rich Aromatic compound. It undergoes aromatic electrophilic substitution reaction.
- The delocalized nature of pi electrons in benzene attributes a special property to benzene called resonance.
- If the substituents on benzene Carbon are Electron rich groups they are known as activating groups. They are ortho- and para- directing groups because these groups when directly bonded to benzene Carbon increases the electron density at ortho and para positions. So they direct the incoming electrophile towards ortho and para position in electrophilic substitution reactions.
- If the substituents on benzene Carbon are Electron withdrawing groups they are known as deactivating groups. They are meta-directing groups because these groups when directly bonded to benzene Carbon decreases the electron density at ortho and para positions and so the incoming electrophile is directed towards meta position.
- Friedel-Crafts Alkylation: This Lewis acid-catalyzed electrophilic aromatic replacement allows the synthesis of alkylated products by means of the reaction of arenes through alkyl halides or alkenes.

Want to see the full answer?
Check out a sample textbook solution
Chapter 19 Solutions
ORGANIC CHEMISTRY GGC>CUSTOM<-TEXT
- Part C IN H N. Br₂ (2 equiv.) AlBr3 Draw the molecule on the canvas by choosing buttons from the Tools (for bonds and + e (×) H± 12D T EXP. L CONT. דarrow_forward9. OA. Rank the expected boiling points of the compounds shown below from highest to lowest. Place your answer appropriately in the box. Only the answer in the box will be graded. (3) points) OH OH بر بد بدید 2 3arrow_forwardThere is an instrument in Johnson 334 that measures total-reflectance x-ray fluorescence (TXRF) to do elemental analysis (i.e., determine what elements are present in a sample). A researcher is preparing a to measure calcium content in a series of well water samples by TXRF with an internal standard of vanadium (atomic symbol: V). She has prepared a series of standard solutions to ensure a linear instrument response over the expected Ca concentration range of 40-80 ppm. The concentrations of Ca and V (ppm) and the instrument response (peak area, arbitrary units) are shown below. Also included is a sample spectrum. Equation 1 describes the response factor, K, relating the analyte signal (SA) and the standard signal (SIS) to their respective concentrations (CA and CIS). Ca, ppm V, ppm SCa, arb. units SV, arb. units 20.0 10.0 14375.11 14261.02 40.0 10.0 36182.15 17997.10 60.0 10.0 39275.74 12988.01 80.0 10.0 57530.75 14268.54 100.0…arrow_forward
- A mixture of 0.568 M H₂O, 0.438 M Cl₂O, and 0.710 M HClO are enclosed in a vessel at 25 °C. H₂O(g) + C₁₂O(g) = 2 HOCl(g) K = 0.0900 at 25°C с Calculate the equilibrium concentrations of each gas at 25 °C. [H₂O]= [C₁₂O]= [HOCI]= M Σ Marrow_forwardWhat units (if any) does the response factor (K) have? Does the response factor (K) depend upon how the concentration is expressed (e.g. molarity, ppm, ppb, etc.)?arrow_forwardProvide the structure, circle or draw, of the monomeric unit found in the biological polymeric materials given below. HO OH amylose OH OH 행 3 HO cellulose OH OH OH Ho HOarrow_forward
- OA. For the structure shown, rank the bond lengths (labeled a, b and c) from shortest to longest. Place your answer in the box. Only the answer in the box will be graded. (2 points) H -CH3 THe b Нarrow_forwardDon't used hand raitingarrow_forwardQuizzes - Gen Organic & Biological Che... ☆ myd21.lcc.edu + O G screenshot on mac - Google Search savings hulu youtube google disney+ HBO zlib Homework Hel...s | bartleby cell bio book Yuzu Reader: Chemistry G periodic table - Google Search b Home | bartleby 0:33:26 remaining CHEM 120 Chapter 5_Quiz 3 Page 1: 1 > 2 > 3 > 6 ¦ 5 > 4 > 7 ¦ 1 1 10 8 ¦ 9 a ¦ -- Quiz Information silicon-27 A doctor gives a patient 0.01 mC i of beta radiation. How many beta particles would the patient receive in I minute? (1 Ci = 3.7 x 10 10 d/s) Question 5 (1 point) Saved Listen 2.22 x 107 222 x 108 3.7 x 108 2.22 x 108 none of the above Question 6 (1 point) Listen The recommended dosage of 1-131 for a test is 4.2 μCi per kg of body mass. How many millicuries should be given to a 55 kg patient? (1 mCi = 1000 μСi)? 230 mCiarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





