Foundations of Astronomy
13th Edition
ISBN: 9781305079151
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 5P
To determine
The age of the meteorite.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A sample from a meteorite that landed on Earth has been analyzed, and the results shows that out of every 1,000 nuclei of potassium- 40 originally in the meteorite, only 125 are still present, meaning they have no yet decayed. How old is the meteorite (in yr)? (Hint: see the figure below) (Note: The half life of potassium- 40 is 1.3 billion years.)
_______ yr
1) How massive would Earth had been if it had accreted hydrogen compounds in addition to the sme properties listed in table 7.1? (Assume the same properties of the ingredients as listed in the table)
2) Now imagine that Earth had been able to capture hydrogen and helium gas in the same proportions as listed in the table. How massive would it have been?
The half-life of Uranium-235 is 700 million years, which makes it useful for dating meteorites. If a meteorite has been determined to have 40% of its original amount of uranium, how old is it?
Chapter 19 Solutions
Foundations of Astronomy
Ch. 19 - Why is the solar nebula theory considered a theory...Ch. 19 - Why was the nebular hypothesis never fully...Ch. 19 - What produced the helium now present in the Suns...Ch. 19 - What produced the iron and heavier elements such...Ch. 19 - Prob. 5RQCh. 19 - What evidence can you give that disks of gas and...Ch. 19 - According to the solar nebula theory, why is...Ch. 19 - Prob. 8RQCh. 19 - Prob. 9RQCh. 19 - Why does the solar nebula theory predict that...
Ch. 19 - What evidence can you give that the Solar System...Ch. 19 - Prob. 12RQCh. 19 - Prob. 13RQCh. 19 - Prob. 14RQCh. 19 - Prob. 15RQCh. 19 - Prob. 16RQCh. 19 - Prob. 17RQCh. 19 - Prob. 18RQCh. 19 - Prob. 19RQCh. 19 - Prob. 20RQCh. 19 - Prob. 21RQCh. 19 - What planet in the Solar System is larger than the...Ch. 19 - Why is almost every solid surface in the Solar...Ch. 19 - Prob. 24RQCh. 19 - Prob. 25RQCh. 19 - Prob. 26RQCh. 19 - What is the difference between condensation and...Ch. 19 - Why dont Terrestrial planets have ring systems...Ch. 19 - How does the solar nebula theory help you...Ch. 19 - Prob. 30RQCh. 19 - If rocks obtained from the Moon indicate an age of...Ch. 19 - Which is older, the Moon or the Sun? How do you...Ch. 19 - How does the solar nebula theory explain the...Ch. 19 - Did hydrogen gas condense from the nebula as the...Ch. 19 - Prob. 35RQCh. 19 - What happens if a planet has differentiated? Would...Ch. 19 - Order the following steps in the formation of a...Ch. 19 - Which step(s) listed in the previous question can...Ch. 19 - Describe two processes that could melt the...Ch. 19 - What is the evidence that Jupiter and Saturn are...Ch. 19 - Describe two processes that cleared the solar...Ch. 19 - What is the difference between a planetesimal and...Ch. 19 - Does Uranus have enough mass to have formed by...Ch. 19 - What properties of the gas and dust disks observed...Ch. 19 - Why would the astronomically short lifetime of gas...Ch. 19 - Prob. 46RQCh. 19 - Prob. 47RQCh. 19 - Describe three methods to find extrasolar planets.Ch. 19 - Why is the existence of hot Jupiters puzzling?...Ch. 19 - Prob. 50RQCh. 19 - The evidence is overwhelming that the Grand Canyon...Ch. 19 - Prob. 52RQCh. 19 - Prob. 1DQCh. 19 - Prob. 2DQCh. 19 - Prob. 3DQCh. 19 - Prob. 4DQCh. 19 - Prob. 5DQCh. 19 - Prob. 6DQCh. 19 - If you observed the Solar System from the vantage...Ch. 19 - Venus can be as bright as apparent magnitude 4.7...Ch. 19 - What is the smallest-diameter crater you can...Ch. 19 - Prob. 4PCh. 19 - Prob. 5PCh. 19 - You analyze a sample of a meteorite that landed on...Ch. 19 - You analyze a sample of a meteorite that landed on...Ch. 19 - Prob. 8PCh. 19 - Examine Table 18-2. What might a planets...Ch. 19 - Examine Table 18-2. What might a planets...Ch. 19 - Suppose that Earth grew to its present size in 10...Ch. 19 - Prob. 12PCh. 19 - Prob. 13PCh. 19 - What do you see in this image that indicates this...Ch. 19 - Why do astronomers conclude that the surface of...Ch. 19 - Prob. 3LTLCh. 19 - Prob. 4LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the differentiated meteorites. We think the irons are from the cores, the stony-irons are from the interfaces between mantles and cores, and the stones are from the mantles of their differentiated parent bodies. If these parent bodies were like Earth, what fraction of the meteorites would you expect to consist of irons, stony-irons, and stones? Is this consistent with the observed numbers of each? (Hint: You will need to look up what percent of the volume of Earth is taken up by its core, mantle, and crust.)arrow_forwardIf a star must remain on the main sequence for at least 4 billion years for life to evolve to intelligence, what is the most massive a star that can form and still possibly harbor intelligent life on one of its exoplanets? (Hints: Use the formula for stellar life expectancies, Eq. 121, and data in Appendix Table A-7.)arrow_forwardYou analyze a sample of a meteorite that landed on Earth and find that 15 16 of a certain type of radioactive atoms have decayed into the corresponding daughter atom. Calculate the number of half-lives that have occurred. half-livesarrow_forward
- If you stood on Earth during its formation, during which it captured about 1.4 ✕ 1011 particles per second, and watched a region covering 310 m2, how many impacts would you expect to see in an hour? (Notes: The surface area of a sphere is 4πr2. Hint: Assume that Earth had its current radius of 6,378 km.) [......] impactsarrow_forwardIf you stood on Earth during its formation, during which it captured about 1.6 ✕ 1011 particles per second, and watched a region covering 170 m2, how many impacts would you expect to see in an hour? (Notes: The surface area of a sphere is 4?r2. Hint: Assume that Earth had its current radius of 6,378 km.)arrow_forwardRe-order the numbers so the events occur in the correct order, with the oldest event as number 2, and the youngest event as number 13. 2. Now at roughly 100% of present-day mass and the asteroid bombardment over, Earth begins cooling and differentiating. As the outer layer of the Earth cools and solidifies, lighter elements and compounds rise to the surface while the denser ones sink to the core 3. The now differentiated ice, gas, and dust of the solar accretion disc conglomerates together into asteroids from gravity 4. "The Big Whack" A Mars-sized protoplanet we call Theia collides with primitive Earth, adding even more energy and mass 5. The Big Bang 6. As the early atmosphere cools, water vapor is eventually cool enough to condense into liquid water, eventually covering the planet in an ocean 7. The debris from the collision of Earth and Theia produce a ring in orbit. This ring eventually coalesces into the Moon, just as Earth coalesced from the solar accretion disc 8. A nebula…arrow_forward
- How does the CNO cycle differ from the protonproton chain? How is it similar?arrow_forwardExplain the role of impacts in planetary evolution, including both giant impacts and more modest ones.arrow_forwardWhy would the astronomically short lifetime of gas and dust disks around protostars pose a problem in understanding how the Jovian planets formed? What modification of the solar nebula theory might solve this problem?arrow_forward
- Rock B was found to contain 6 atoms of a parent isotope and 94 atoms of its daughter isotope. If the half-life of the parent- daughter isotope pair is 2 million years, what is the absolute age of Rock B? Parent atoms remaining 100 94 atoms 87 atoms 80 75 atoms 60 50 atoms 40 25 atoms 13 atoms 6 atoms 1 2 3 4 Number of half-lives (Elapsed time) 2 million years old 4 million years old 6 million years old 8 million years old 94 million years old LO 20 Number of atoms (percent)arrow_forward____ impactsarrow_forwardThe iron meteorite that created Barringer Crater (Arizona) was 50 m in diameter. It caused a crater 1.2 km (1200 m) in diameter, that is, 24 times bigger than the impactor. Keeping in mind that the size of the crater depends on many factors, such as the type of rocks present in the area, estimate the approximate size of the impactor that produced Mare Serenitatis.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax