Foundations of Astronomy
13th Edition
ISBN: 9781305079151
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 19, Problem 2P
Venus can be as bright as apparent magnitude −4.7 when at a distance of about 1 AU. How many times fainter would Venus look from a distance of 1 pc? What would its apparent magnitude be? Assume Venus has the same illumination phase from your new vantage point. (Hints: Recall the inverse square law, Section 9-2a; also, review the definition of apparent visual magnitudes, Chapter 2.) (Note: 1 pc = 2.1 × 105 AU.)
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
I need help with this question! There is only one part to it!
Venus can be as bright as apparent magnitude −4.7 when at a distance of about 1 AU. How many times fainter would Venus look from a distance of 7 pc? Assume Venus has the same illumination phase from your new vantage point. (Hints: Recall the inverse square law; also, review the definition of apparent visual magnitudes. Note: 1 pc = 2.1 ✕ 105 AU).
[fill in the blank] times fainter
What would its apparent magnitude be?
Venus can be as bright as apparent magnitude -4.7 when at a distance of about 1 AU. How many times fainter would Venus look from a distance of 5 pc? Assume Venus has the same illumination
phase from your new vantage point. (Hints: Recall the inverse square law; also, review the definition of apparent visual magnitudes. ote: 1 pc = 2.1 x 10° AU).
times fainter
What would its apparent magnitude be?
Need Help?
Read It
Chapter 19 Solutions
Foundations of Astronomy
Ch. 19 - Why is the solar nebula theory considered a theory...Ch. 19 - Why was the nebular hypothesis never fully...Ch. 19 - What produced the helium now present in the Suns...Ch. 19 - What produced the iron and heavier elements such...Ch. 19 - Prob. 5RQCh. 19 - What evidence can you give that disks of gas and...Ch. 19 - According to the solar nebula theory, why is...Ch. 19 - Prob. 8RQCh. 19 - Prob. 9RQCh. 19 - Why does the solar nebula theory predict that...
Ch. 19 - What evidence can you give that the Solar System...Ch. 19 - Prob. 12RQCh. 19 - Prob. 13RQCh. 19 - Prob. 14RQCh. 19 - Prob. 15RQCh. 19 - Prob. 16RQCh. 19 - Prob. 17RQCh. 19 - Prob. 18RQCh. 19 - Prob. 19RQCh. 19 - Prob. 20RQCh. 19 - Prob. 21RQCh. 19 - What planet in the Solar System is larger than the...Ch. 19 - Why is almost every solid surface in the Solar...Ch. 19 - Prob. 24RQCh. 19 - Prob. 25RQCh. 19 - Prob. 26RQCh. 19 - What is the difference between condensation and...Ch. 19 - Why dont Terrestrial planets have ring systems...Ch. 19 - How does the solar nebula theory help you...Ch. 19 - Prob. 30RQCh. 19 - If rocks obtained from the Moon indicate an age of...Ch. 19 - Which is older, the Moon or the Sun? How do you...Ch. 19 - How does the solar nebula theory explain the...Ch. 19 - Did hydrogen gas condense from the nebula as the...Ch. 19 - Prob. 35RQCh. 19 - What happens if a planet has differentiated? Would...Ch. 19 - Order the following steps in the formation of a...Ch. 19 - Which step(s) listed in the previous question can...Ch. 19 - Describe two processes that could melt the...Ch. 19 - What is the evidence that Jupiter and Saturn are...Ch. 19 - Describe two processes that cleared the solar...Ch. 19 - What is the difference between a planetesimal and...Ch. 19 - Does Uranus have enough mass to have formed by...Ch. 19 - What properties of the gas and dust disks observed...Ch. 19 - Why would the astronomically short lifetime of gas...Ch. 19 - Prob. 46RQCh. 19 - Prob. 47RQCh. 19 - Describe three methods to find extrasolar planets.Ch. 19 - Why is the existence of hot Jupiters puzzling?...Ch. 19 - Prob. 50RQCh. 19 - The evidence is overwhelming that the Grand Canyon...Ch. 19 - Prob. 52RQCh. 19 - Prob. 1DQCh. 19 - Prob. 2DQCh. 19 - Prob. 3DQCh. 19 - Prob. 4DQCh. 19 - Prob. 5DQCh. 19 - Prob. 6DQCh. 19 - If you observed the Solar System from the vantage...Ch. 19 - Venus can be as bright as apparent magnitude 4.7...Ch. 19 - What is the smallest-diameter crater you can...Ch. 19 - Prob. 4PCh. 19 - Prob. 5PCh. 19 - You analyze a sample of a meteorite that landed on...Ch. 19 - You analyze a sample of a meteorite that landed on...Ch. 19 - Prob. 8PCh. 19 - Examine Table 18-2. What might a planets...Ch. 19 - Examine Table 18-2. What might a planets...Ch. 19 - Suppose that Earth grew to its present size in 10...Ch. 19 - Prob. 12PCh. 19 - Prob. 13PCh. 19 - What do you see in this image that indicates this...Ch. 19 - Why do astronomers conclude that the surface of...Ch. 19 - Prob. 3LTLCh. 19 - Prob. 4LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Venus can be as bright as apparent magnitude -4.7 when at a distance of about 1 AU. How many times fainter would Venus look from a distance of 5 pc? Assume Venus has the same illumination phase from your new vantage point. (Hints: Recall the inverse square law; also, review the definition of apparent visual magnitudes. Note: 1 pc = 2.1 x 105 AU). times fainter What would its apparent magnitude be?arrow_forwardVenus can be as bright as apparent magnitude −4.7 when at a distance of about 1 AU. How many times fainter would Venus look from a distance of 7 pc? Assume Venus has the same illumination phase from your new vantage point. (Hints: Recall the inverse square law; also, review the definition of apparent visual magnitudes. Note: 1 pc = 2.1 ✕ 105 AU). What would its apparent magnitude be?arrow_forwardNo handwrittenarrow_forward
- Venus can be as bright as apparent magnitude −4.7 when at a distance of about 1 AU. How many times fainter would Venus look from a distance of 1 pc? What would its apparent magnitude be? Assume Venus has the same illumination phase from your new vantage point. (Hints: Light follows an inverse square law as does gravity, review Section 5-1c; also, review the definition of apparent visual magnitudes, Chapter 2.) (Note: 1 pc = 2.1 × 105 AU.)arrow_forwardQ1arrow_forwardUse this light curve of a star with a transiting exoplanet to answer the following. If the exoplanet is orbiting a star identical to our own Sun, what is its average orbital distance, in AU? What is the period in years of the transiting exoplanet? Use this light curve of a star with a transiting exoplanet to answer the following questions. Brightness 0 V V V B 5 10 15 20 Time (months) 25 30 35arrow_forward
- 1. These images were taken six months apart, first when Earth was as far to one side of Alpha Centauri as it can get and again when Earth was as far to the other side of Alpha Centauri as it can get. Consequently, the baseline between the two observing positions is how many AU across? Answer: 1.7 arcsec 2. First, convert this to kilometers using your measurement of how many kilometers are in an AU. 3. Now convert the baseline to kilometers using the true value for the number of kilometers in an AU. 4. Calculate the distance to Alpha Centauri using parallax and the true baseline in kilometers. 5. Google and record the true value. 6. Calculate your percent error 7. Discuss significant sources of errorarrow_forwardConsider the attached light curve for a transiting planet observed by the Kepler mission. If the host star is identical to the sun, what is the radius of this planet? Give your answer in terms of the radius of Jupiter. Brightness of Star Residual Flux 0.99 0.98 0.97 0.006 0.002 0.000 -8-881 -0.06 -0.04 -0.02 0.00 Time (days) → 0.02 0.04 0.06arrow_forwardThe ratio of charon to pluto's roche limit? or How close is Charon to Pluto's Roche limit? please solve accurate and exactarrow_forward
- What is the maximum angular diameter of the dwarf planet Ceres when it is closest to Earth? Could Earth-based telescopes detect surface features? Could the Hubble Space Telescope? (Hint: Use the small-angle formula, Eq. 3-1.) (Notes: Ceress average distance from the Sun is 2.8 AU and its diameter is 950 km. The best angular resolution of Earth-based telescopes at visual wavelengths is about 1 arc second and of Hubble about 0.1 arc second.)arrow_forwardIf you observed the Solar System from the vantage point of the nearest star, at a distance of 1.3 pc, what would the maximum angular separation be between Earth and the Sun? (Hint: Use the small-angle formula, Eq. 3-1.) (Note: 1 pc = 2.1 105 AU.)arrow_forwardWhat was the solar nebula like? Why did the Sun form at its center?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY