College Physics For Ap® Courses
16th Edition
ISBN: 9781938168932
Author: Gregg Wolfe, Irina Lyublinskaya, Douglas Ingram
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19, Problem 56PE
Unreasonable Results
(a) A certain parallel plate capacitor has plates of area 4.00 m2 separated by 0.0100 mm of nylon, and stores 0.170 C of charge. What is the applied voltage? (b) What is unreasonable about this result? (c) Which assumptions are responsible or inconsistent?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Fractions
1. Covert 5/7 to a decimal
2. 5/7 x 3/8
3. 2/5 divided 4/9
4. covert 37/ 19 to a decimal
this is an exam past paper question that i need help with becuase i am reviewing not a graded assignment
sunny
(1)
-13-
end. One box contains nothing inside; one has a piece of resistance wire between the terminals
You are provided with three sealed identical matchboxes labelled A, B and C, with terminals at each
and the other, a semi-conductor diode.
Plan and design an experiment to identify the contents of each box.
You are provided with the following elements for your apparatus:
Ammeter
Low voltage power supply
Connecting wires
Labelled circuit diagram
Draw a well-labelled circuit diagram to show how you would connect the apparatus listed
above to each matchbox.
(3 ma
Chapter 19 Solutions
College Physics For Ap® Courses
Ch. 19 - Voltage is the common word for potential...Ch. 19 - It the voltage between two points is zero, can a...Ch. 19 - What is the relationship between voltage and...Ch. 19 - Voltages are always measured between two points....Ch. 19 - How are units of volts and electron volts related?...Ch. 19 - Discuss how potential difference and electric...Ch. 19 - What is the strength of the electric field in a...Ch. 19 - Will a negative charge, initially at rest, move...Ch. 19 - In what region of space is the potential due to a...Ch. 19 - Can the potential of a non-uniformly charged...
Ch. 19 - What is an equipotential line? What is an...Ch. 19 - Explain in your own words why equipotential lines...Ch. 19 - Can different equipotential lines cross? Explain.Ch. 19 - Does the capacitance of a device depend on the...Ch. 19 - Use the characteristics of the of the Coulomb...Ch. 19 - Give the reason why a dielectric material...Ch. 19 - How does the polar character of water molecules...Ch. 19 - Sparks will occur between the plates of an air...Ch. 19 - Water has a large dielectric constant, but it is...Ch. 19 - Membranes ii living cells, including those in...Ch. 19 - If you wish to store a large amount of energy m a...Ch. 19 - How does the energy contained in a charged...Ch. 19 - What happens to the energy stored in a capacitor...Ch. 19 - Find the ratio of speeds of an electron and a...Ch. 19 - An evacuated tube uses an accelerating voltage of...Ch. 19 - A bare helium nucleus has two positive charges and...Ch. 19 - Integrated Concepts Singly charged gas ions are...Ch. 19 - Integrated Concepts The temperature near the...Ch. 19 - Integrated Concepts (a) What is the average power...Ch. 19 - Integrated Concepts A lightning bolt strikes a...Ch. 19 - Integrated Concepts: A 12.0 V battery-operated...Ch. 19 - Integrated Concepts A battery-operated car...Ch. 19 - Integrated Concepts Fusion probability is greatly...Ch. 19 - Unreasonable Results (a) Find the voltage near a...Ch. 19 - Construct Your Own Problem Consider a battery used...Ch. 19 - Show that units of Vim and N/C for electric field...Ch. 19 - What is the strength of the electric field between...Ch. 19 - The electric field strength between two parallel...Ch. 19 - How far apart are two conducting plates that have...Ch. 19 - (a) Will the electric field strength between two...Ch. 19 - The voltage across a membrane forming a cell wall...Ch. 19 - Membrane walls of living cells have surprisingly...Ch. 19 - Two parallel conducting plates are separated by...Ch. 19 - Find the maximum potential difference between two...Ch. 19 - A doubly charged ion is accelerated to an energy...Ch. 19 - An electron is to be accelerated in a uniform...Ch. 19 - A 0.500 cm diameter plastic sphere, used in a...Ch. 19 - What is the potential 0.530 x 10-10 m from a...Ch. 19 - (a) A sphere has a surface uniformly charged with...Ch. 19 - How far from a 1.00 C point charge will the...Ch. 19 - What are the sign and magnitude of a point charge...Ch. 19 - If the potential due to a point charge is 5.00 102...Ch. 19 - In nuclear fission. a nucleus splits roughly in...Ch. 19 - A research Van de Graaff generator has a 2.00-rn-...Ch. 19 - An electrostatic paint sprayer has a...Ch. 19 - In one of the classic nuclear physics experiments...Ch. 19 - (a) What is the potential between two points...Ch. 19 - Unreasonable Results (a) What is the final speed...Ch. 19 - (a) Sketch the equipotential lines near a point...Ch. 19 - Sketch the equipotential lines for the two equal...Ch. 19 - Figure 19.28 shows the electric field lines near...Ch. 19 - Sketch the equipotential lines a long distance...Ch. 19 - Sketch the equipotential lines in the vicinity of...Ch. 19 - Sketch the equipotential lines in the vicinity of...Ch. 19 - Sketch the equipotential lines surrounding the two...Ch. 19 - (a) Sketch the electric field lines in the...Ch. 19 - The naturally occurring charge on the ground on a...Ch. 19 - The lesser electric ray (Narcine bancroftii)...Ch. 19 - What charge is stored in a 180 F capacitor when...Ch. 19 - Find the charge stored when 5.50 V is applied to...Ch. 19 - What charge is stored in the capacitor in Example...Ch. 19 - Calculate the voltage applied to a 2.00 F...Ch. 19 - What voltage must be applied to an 8.00 nF...Ch. 19 - What capacitance is needed to store 3.00 C of...Ch. 19 - What is the capacitance of a large Van de Graaff...Ch. 19 - Find the capacitance of a parallel plate capacitor...Ch. 19 - (a) What is the capacitance of a parallel plate...Ch. 19 - Integrated Concepts A prankster applies 450 V to...Ch. 19 - Unreasonable Results (a) A certain parallel plate...Ch. 19 - Find the total capacitance of the combination of...Ch. 19 - Suppose you want a capacitor bank with a total...Ch. 19 - What total capacitances can you make by connecting...Ch. 19 - Find the total capacitance of the combination of...Ch. 19 - Find the total capacitance of the combination of...Ch. 19 - Unreasonable Results (a) An 8.00 F capacitor is...Ch. 19 - (a) What is the energy stored in the 10.0 F...Ch. 19 - In open heart surgery. a much smaller amount of...Ch. 19 - A 165 F capacitor is used in conjunction with a...Ch. 19 - Suppose you have a 9.00 V battery, a 2.00 F...Ch. 19 - A nervous physicist worries that the two metal...Ch. 19 - Show that for a given dielectric material the...Ch. 19 - Construct Your Own Problem Consider a heart...Ch. 19 - Unreasonable Results (a) On a particular day, it...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The central nervous system is responsible for: a. integrative functions. b. sensory functions. c. motor functio...
Human Anatomy & Physiology (2nd Edition)
[14.110] The following mechanism has been proposed for the gas-phase reaction of chloroform (CHCI3) and chlorin...
Chemistry: The Central Science (14th Edition)
How do you think a cell performing cellular respiration rids itself of the resulting CO2?
Campbell Biology in Focus (2nd Edition)
4. What five specific threats to biodiversity are described in this chapter? Provide an example of each.
Biology: Life on Earth (11th Edition)
Define histology.
Fundamentals of Anatomy & Physiology (11th Edition)
Compare and contrast aerobic respiration, anaerobic respiration, and fermentation.
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- RAD127 Radiographic Equipment and Computers SI Units in Radiography Ch. 1 & 2 Instructions: Provide the units for each of the following in full and short forms 1. Mass - kg, 9 or (1b)) ・ 2. Energy, Work - W = FD,J 3. Air kerma -(Gya) 4. Absorbed Dose- 5. Effective Dose J/kg (94+) jlkg J/kg, Sv 6. Radioactivity - 5-1, Bq 7. Weight 8. Time 9. Force 10. Power B9 wt, wt-mg, N -(s) F= ma, N, OR 1b. (JIS), P= work It = Fdlt, Jarrow_forwardanswer 1-8arrow_forward1 . Solve the equation 2/7=y/3 for y. 2. Solve the equation x/9=2/6 for x. 3. Solve the equation z + 4 = 10 This is algebra and the equation is fraction.arrow_forward
- two satellites are in circular orbits around the Earth. Satellite A is at an altitude equal to the Earth's radius, while satellite B is at an altitude equal to twice the Earth's radius. What is the ratio of their periods, Tb/Taarrow_forwardFresnel lens: You would like to design a 25 mm diameter blazed Fresnel zone plate with a first-order power of +1.5 diopters. What is the lithography requirement (resolution required) for making this lens that is designed for 550 nm? Express your answer in units of μm to one decimal point. Fresnel lens: What would the power of the first diffracted order of this lens be at wavelength of 400 nm? Express your answer in diopters to one decimal point. Eye: A person with myopic eyes has a far point of 15 cm. What power contact lenses does she need to correct her version to a standard far point at infinity? Give your answer in diopter to one decimal point.arrow_forwardParaxial design of a field flattener. Imagine your optical system has Petzal curvature of the field with radius p. In Module 1 of Course 1, a homework problem asked you to derive the paraxial focus shift along the axis when a slab of glass was inserted in a converging cone of rays. Find or re-derive that result, then use it to calculate the paraxial radius of curvature of a field flattener of refractive index n that will correct the observed Petzval. Assume that the side of the flattener facing the image plane is plano. What is the required radius of the plano-convex field flattener? (p written as rho )arrow_forward
- 3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons. Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.arrow_forward3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons. Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.arrow_forwardNo chatgpt pls will upvotearrow_forward
- Use the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: Incident ray at A Note: This diagram is not to scale. a Air (n = 1.00) Water (n = 1.34) 1) Determine the angle of refraction of the ray of light in the water. Barrow_forwardHi can u please solvearrow_forward6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from diffraction limited, with a spot size of more than 100 microns. Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert one extra line at the top of the merit function. Assign the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY