
Interpretation:
The oxidizer and reducer with oxidized and reduced products are to be stated. The
Concept introduction:
The oxidizer is the species whose oxidation state falls during the course of reaction and reducer is the species whose oxidation number increases. Oxidized product is the oxidation product of the reducer and reduced product is the reduction product of the oxidizer.

Answer to Problem 51E
The oxidizer is
The oxidation half-reaction equation is shown below.
The reduction half-reaction equation is shown below.
The balanced redox equation is shown below.
Explanation of Solution
The given redox reaction equation to be balanced is shown below.
The oxidation state of the central metal atom is calculated by knowing the standard oxidation states of few elements.
The oxidation state of arsenic in
Step-1: Write down the oxidation number of every element and for unknown take “n”.
Step-2: Multiply the oxidation state with their number of atoms of an element.
Step-3: Add the oxidation numbers and set them equal to the charge of the species.
Calculate the value of n by simplifying the equation as shown below.
Divide the equation by two on both sides and simplify as shown below.
The oxidation state of arsenic in
The oxidation state of arsenic in
Step-1: Write down the oxidation number of every element and for unknown take “n”.
Step-2: Multiply the oxidation state with their number of atoms of an element.
Step-3: Add the oxidation numbers and set them equal to the charge of the species.
Calculate the value of n by simplifying the equation as shown below.
The oxidation state of arsenic in
The oxidation state of the nitrogen in
Step-1: Write down the oxidation number of every element and for unknown take “n”.
Step-2: Multiply the oxidation state with their number of atoms of an element.
Step-3: Add the oxidation numbers and set them equal to the charge of the species.
Calculate the value of n by simplifying the equation as shown below.
The oxidation state of nitrogen is
The oxidation number of nitrogen in
Step-1: Write down the oxidation number of every element and for unknown take “n”.
Step-2: Multiply the oxidation state with their number of atoms of an element.
Step-3: Add the oxidation numbers and set them equal to the charge of the species.
Calculate the value of n by simplifying the equation as shown below.
The oxidation state of nitrogen in
The nitrogen in
Therefore, the oxidizer is
The oxidation half-reaction equation for the above equation is shown below.
The balancing of the half-reactions is done by the following the steps shown below.
Step-1: Identify and balance the element getting oxidized or reduced.
The arsenic is getting oxidized and the number of atoms of that is not balanced on both sides. Multiply
Step-2: Balance elements other than oxygen and hydrogen if any.
Step-3: Balance oxygen atoms by adding water on the appropriate side.
Oxygen atoms are balanced by adding five water molecule to the left-hand side of the equation.
Step-4: Balance the hydrogen atoms by adding
The number of hydrogen atoms is balanced by adding the ten
Step-5: Balance the charge by adding electrons to the appropriate side.
Six electrons are added to the right-hand side in order to balance the charge.
Step-6: Recheck the equation to be sure that it is perfectly balanced.
The equation is completely balanced and is shown below.
The reduction half-reaction for the above reaction is shown below.
The balancing of the half-reactions is done by the following the steps shown below.
Step-1: Identify and balance the element getting oxidized or reduced.
The nitrogen is getting reduced and its number of atoms are balanced on both sides.
Step-2: Balance elements other than oxygen and hydrogen if any.
Step-3: Balance oxygen atoms by adding water on the appropriate side.
The number of oxygen atoms is balanced by adding two water molecules on the right-hand side of the equation.
Step-4: Balance the hydrogen atoms by adding
The number of hydrogen atoms is balanced by adding four
Step-5: Balance the charge by adding electrons to the appropriate side.
The charge is balanced by adding three electrons on the left-hand side of the equation.
Step-6: Recheck the equation to be sure that it is perfectly balanced.
The equation is completely balanced and is shown below.
The balanced redox equation is obtained by adding equation (1) and (2) in such a way that electrons are canceled out.
Multiply equation (1) by three and equation (2) by four in order to cancel out the number of electrons as shown below.
Add equation (3) and (1) to get a balanced redox equation as shown below.
The common things on both sides of the equation canceled out to give the balanced redox equation.
The balanced redox equation after adding these equations is shown below.
The oxidizer and reducer with oxidized and reduced products, oxidation and reduction half-reaction equations, and balanced redox equation are rightfully stated above.
Want to see more full solutions like this?
Chapter 19 Solutions
EBK INTRODUCTORY CHEMISTRY: AN ACTIVE L
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Drawing Arrows THE Problem 33 of 35 N. C:0 Na + Submit Drag To Pan +arrow_forwardDraw the product of the E2 reaction shown below. Include the correct stereochemistry. Ignore and inorganic byproducts.arrow_forwardDraw the major producrs of this SN1 reaction. Ignore any inorganic byproducts. Use a dash or wedge bond to indicate the sereochemistry of substituents on asymmetric centers where appllicable.arrow_forward
- 5) Oxaloacetic Acid is an important intermediate in the biosynthesis of citric acid. Synthesize oxaloacetic acid using a mixed Claisen Condensation reaction with two different esters and a sodium ethoxide base. Give your answer as a scheme Hint 1: Your final acid product is producing using a decarboxylation reaction. Hint 2: Look up the structure of oxalic acid. HO all OH oxaloacetic acidarrow_forward20. The Brusselator. This hypothetical system was first proposed by a group work- ing in Brussels [see Prigogine and Lefever (1968)] in connection with spatially nonuniform chemical patterns. Because certain steps involve trimolecular reac tions, it is not a model of any real chemical system but rather a prototype that has been studied extensively. The reaction steps are A-X. B+X-Y+D. 2X+ Y-3X, X-E. 305 It is assumed that concentrations of A, B, D, and E are kept artificially con stant so that only X and Y vary with time. (a) Show that if all rate constants are chosen appropriately, the equations de scribing a Brusselator are: dt A-(B+ 1)x + x²y, dy =Bx-x²y. diarrow_forwardProblem 3. Provide a mechanism for the following transformation: H₂SO A Me. Me Me Me Mearrow_forward
- You are trying to decide if there is a single reagent you can add that will make the following synthesis possible without any other major side products: xi 1. ☑ 2. H₂O хе i Draw the missing reagent X you think will make this synthesis work in the drawing area below. If there is no reagent that will make your desired product in good yield or without complications, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. There is no reagent that will make this synthesis work without complications. : ☐ S ☐arrow_forwardPredict the major products of this organic reaction: H OH 1. LiAlH4 2. H₂O ? Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. G C टेarrow_forwardFor each reaction below, decide if the first stable organic product that forms in solution will create a new C-C bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. NH2 CI MgCl ? Will the first product that forms in this reaction create a new CC bond? Yes No MgBr ? Will the first product that forms in this reaction create a new CC bond? Yes No G टेarrow_forward
- For each reaction below, decide if the first stable organic product that forms in solution will create a new CC bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. དྲ。 ✗MgBr ? O CI Will the first product that forms in this reaction create a new C-C bond? Yes No • ? Will the first product that forms in this reaction create a new CC bond? Yes No × : ☐ Xarrow_forwardPredict the major products of this organic reaction: OH NaBH4 H ? CH3OH Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. ☐ : Sarrow_forwardPredict the major products of this organic reaction: 1. LIAIHA 2. H₂O ? Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. X : ☐arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning



