An ideal gas is trapped inside a tube of uniform cross-sectional area sealed at one end as shown in Figure P19.49. A column of mercury separates the gas from the outside. The tube can be turned in a vertical plane. In Figure P19.49A, the column of air in the tube has length L1, whereas in Figure P19.49B, the column of air has length L2. Find an expression (in terms of the parameters given) for the length L3 of the column of air in Figure P19.49C, when the tube is inclined at an angle θ with respect to the vertical.
FIGURE P19.49
The expression for the length
Answer to Problem 49PQ
The expression for the length
Explanation of Solution
Three cases are depicted here. The first case in which the length of the air column is
In all the three cases mercury separates the air from outside. In all the three cases mercury should be in static equilibrium. The forces experienced by the mercury are the force due to the pressure inside the tube, the force from the atmospheric pressure, and the force due to the weight of the mercury. Here the tube is maintained at constant pressure. So apply Boyle’s law.
Consider Figure 1.
Weight of mercury acts perpendicular to the orientation of the tube. Thus the mercury is in equilibrium whenever the atmospheric pressure is equal to the pressure inside the tube.
Here,
Consider Figure 2.
Here the outside atmospheric pressure is balanced by the sum of pressure in the tube due to the air column and the pressure due the weight of mercury.
Write the expression for the pressure due to the weight of mercury in position B.
Here,
Write the expression for the density of mercury.
Here,
Solve equation (III) for
Use expression (IV) in (II).
Here,
The atmospheric pressure at position B is balanced by the sum of pressures due to the weight of mercury, and pressure due to the column of air in the tube.
Here,
Consider the position 3.
Here the pressure due to atmosphere is balanced by pressure inside the tube due to gas column denoted by
Write the expression for the vertical component of pressure due to the weight of mercury column.
Here,
Write the expression for the balance of pressure in the tube kept in position 3.
Since the temperature is constant, apply Boyle’s law. Boyle’s law states that the volume of a gas is directly proportional to the pressure of the gas at constant temperature.
Write the expression for Boyle’s law for case A and case B.
Write the expression for volume of air in tube 1.
Here,
Write the expression for volume of air in tube 2.
Here,
Use expression (XI), (VII), (XII) and (I) in expression (X).
Solve expression for
Write the expression for Boyle’s law for case A and case C.
Write the expression for volume of air in tube 3.
Here,
Use expression (XI), (XVI), (IX) and (I) in expression (XV).
Solve expression (XVII) for
Equate the right hand sides of equations (XIV) and (XVIII) and solve for
Solve expression (XIX) for
Conclusion:
Therefore, the expression for the length
Want to see more full solutions like this?
Chapter 19 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Checkpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forwardWhat is integrated science. What is fractional distillation What is simple distillationarrow_forward19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forward
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning