Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 49AP
To determine
The pressure in both chambers.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 1: Consider the two-sided chamber shown,where the right half has a volume of V
= 590 L and the left half has a volume of 2V. The chamber has a seal which separates the right from
the left half. The chamber is sealed and an ideal gas is pumped into the right side at a pressure P=
6.4 atm and temperature T= 78° C. The seal between the two sides is then opened.
2V
V
Part (a) If the physical temperature decreases by a factor of 2 while the gas fills the chamber, what is the new pressure, in kilopascals?
P'=
sin()
cos()
tan()
7
8
HOME
cotan()
asin()
acos()
5
atan()
acotan()
sinh()
1
2
3
cosh()
tanh()
cotanh()
+
END
ODegrees O Radians
Vol BACKSPACE
CLEAR
Submit
I give up!
Hint
Feedback
Part (b) The chamber is then sealed again, trapping 2/3 of the gas molecules in the left side. The temperature of the left side is then doubled, back
to the original temperature T. What is the pressure in the left side of the chamber now, in kilopascals?
A high-pressure gas cylinder contains 50.0 L of toxic gas at a pressure of 1.40×107 N/m2 and a temperature of 25.0ºC . Its valve leaks after the cylinder is dropped. The cylinder is cooled to dry ice temperature (–78.5ºC) to reduce the leak rate and pressure so that it can be safely repaired. (a) What is the final pressure in the tank, assuming a negligible amount of gas leaks while being cooled and that there is no phase change? (b) What is the final pressure if one-tenth of the gas escapes? (c) To what temperature must the tank be cooled to reduce the pressure to 1.00 atm (assuming the gas does not change phase and that there isno leakage during cooling)? (d) Does cooling the tank appear to be a practical solution?
A cylinder with initial volume V contains a sample of a gas at pressure p. On one end of the
cylinder, piston is let free to move so that the gas slowly expands in such a way that its pressure
is directly proportional to its volume. After the gas reaches the volume 3V and pressure 3p, the
piston is pushed in so that the gas is compressed isobarically to its original volume V. The gas is
then cooled isochorically until it returns to the original volume and pressure.
Find the work W done on the gas during the entire process.
VISUALIZE Show the process on a pV diagram. Note whether it happens to be one of the basic gas processes: isochoric, isobaric, or isothermal.
SOLVE Calculate the work as the area under the pV curve either geometrically or by carrying out the integration:
work done on the gas W
REVIEW Check your signs.
W> 0 when the gas is compressed. Energy is transferred from the environment to the gas.
• W <0 when the gas expands. Energy is transferred from the gas to the…
Chapter 19 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 19.1 - Prob. 19.1QQCh. 19.3 - Consider the following pairs of materials. Which...Ch. 19.4 - If you are asked to make a very sensitive glass...Ch. 19.4 - Prob. 19.4QQCh. 19.5 - A common material for cushioning objects in...Ch. 19.5 - On a winter day, you turn on your furnace and the...Ch. 19 - Prob. 1OQCh. 19 - Prob. 2OQCh. 19 - Prob. 3OQCh. 19 - Prob. 4OQ
Ch. 19 - Prob. 5OQCh. 19 - Prob. 6OQCh. 19 - Prob. 7OQCh. 19 - Prob. 8OQCh. 19 - Prob. 9OQCh. 19 - Prob. 10OQCh. 19 - Prob. 11OQCh. 19 - Prob. 12OQCh. 19 - Prob. 13OQCh. 19 - Prob. 14OQCh. 19 - Prob. 1CQCh. 19 - Prob. 2CQCh. 19 - Prob. 3CQCh. 19 - Prob. 4CQCh. 19 - Prob. 5CQCh. 19 - Metal lids on glass jars can often be loosened by...Ch. 19 - Prob. 7CQCh. 19 - Prob. 8CQCh. 19 - Prob. 9CQCh. 19 - Prob. 10CQCh. 19 - Prob. 1PCh. 19 - Prob. 2PCh. 19 - Prob. 3PCh. 19 - Prob. 4PCh. 19 - Liquid nitrogen has a boiling point of 195.81C at...Ch. 19 - Prob. 6PCh. 19 - Prob. 7PCh. 19 - Prob. 8PCh. 19 - Prob. 9PCh. 19 - Prob. 10PCh. 19 - A copper telephone wire has essentially no sag...Ch. 19 - Prob. 12PCh. 19 - The Trans-Alaska pipeline is 1 300 km long,...Ch. 19 - Prob. 14PCh. 19 - Prob. 15PCh. 19 - Prob. 16PCh. 19 - Prob. 17PCh. 19 - Why is the following situation impossible? A thin...Ch. 19 - A volumetric flask made of Pyrex is calibrated at...Ch. 19 - Review. On a day that the temperature is 20.0C, a...Ch. 19 - Prob. 21PCh. 19 - Prob. 22PCh. 19 - Prob. 23PCh. 19 - Prob. 24PCh. 19 - Prob. 25PCh. 19 - Prob. 26PCh. 19 - Prob. 27PCh. 19 - Prob. 28PCh. 19 - Prob. 29PCh. 19 - Prob. 30PCh. 19 - An auditorium has dimensions 10.0 m 20.0 m 30.0...Ch. 19 - Prob. 32PCh. 19 - Prob. 33PCh. 19 - Prob. 34PCh. 19 - Prob. 35PCh. 19 - In state-of-the-art vacuum systems, pressures as...Ch. 19 - Prob. 37PCh. 19 - Prob. 38PCh. 19 - Prob. 39PCh. 19 - Prob. 40PCh. 19 - Prob. 41PCh. 19 - Prob. 42PCh. 19 - Prob. 43PCh. 19 - The pressure gauge on a cylinder of gas registers...Ch. 19 - Prob. 45APCh. 19 - Prob. 46APCh. 19 - Prob. 47APCh. 19 - Prob. 48APCh. 19 - Prob. 49APCh. 19 - Why is the following situation impossible? An...Ch. 19 - Prob. 51APCh. 19 - Prob. 52APCh. 19 - Prob. 53APCh. 19 - Prob. 54APCh. 19 - A student measures the length of a brass rod with...Ch. 19 - Prob. 56APCh. 19 - A liquid has a density . (a) Show that the...Ch. 19 - Prob. 59APCh. 19 - Prob. 60APCh. 19 - The rectangular plate shown in Figure P19.61 has...Ch. 19 - Prob. 62APCh. 19 - Prob. 63APCh. 19 - Prob. 64APCh. 19 - Prob. 65APCh. 19 - Prob. 66APCh. 19 - Prob. 67APCh. 19 - Prob. 68APCh. 19 - Prob. 69APCh. 19 - Prob. 70APCh. 19 - Prob. 71APCh. 19 - Prob. 72CPCh. 19 - Prob. 73CPCh. 19 - Prob. 74CPCh. 19 - Prob. 75CPCh. 19 - Prob. 76CPCh. 19 - Prob. 77CPCh. 19 - Prob. 78CPCh. 19 - A 1.00-km steel railroad rail is fastened securely...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sealed cubical container 20.0 cm on a side contains a gas with three times Avogadros number of neon atoms at a temperature of 20.0C. (a) Find the internal energy of the gas. (b) Find the total translational kinetic energy of the gas. (c) Calculate the average kinetic energy per atom, (d) Use Equation 10.13 to calculate the gas pressure. (e) Calculate the gas pressure using the ideal gas law (Eq. 10.8).arrow_forwardOn a hot summer day, the density of air at atmospheric pressure at 35.0C is 1.1455 kg/m3. a. What is the number of moles contained in 1.00 m3 of an ideal gas at this temperature and pressure? b. Avogadros number of air molecules has a mass of 2.85 102 kg. What is the mass of 1.00 m3 of air? c. Does the value calculated in part (b) agree with the stated density of air at this temperature?arrow_forwardAn ideal gas is trapped inside a tube of uniform cross-sectional area sealed at one end as shown in Figure P19.49. A column of mercury separates the gas from the outside. The tube can be turned in a vertical plane. In Figure P19.49A, the column of air in the tube has length L1, whereas in Figure P19.49B, the column of air has length L2. Find an expression (in terms of the parameters given) for the length L3 of the column of air in Figure P19.49C, when the tube is inclined at an angle with respect to the vertical. FIGURE P19.49arrow_forward
- A sample of a monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K (point A in Fig. P21.65). It is warmed at constant volume to 3.00 atm (point B). Then it is allowed to expand isothermally to 1.00 atm (point C) and at last compressed isobarically to its original state, (a) Find the number of moles in the sample. Find (b) the temperature at point B, (c) the temperature at point C, and (d) the volume at point C. (e) Now consider the processes A B, B C, and C A. Describe how to carry out each process experimentally, (f) Find Q, W, and Eint for each of the processes, (g) For the whole cycle A B C A, find Q, W, and Eint.arrow_forwardA cylinder with a piston holds 0.50 m3 of oxygen at an absolute pressure of 4.0 atm. The piston is pulled outward, increasing the volume of the gas until the pressure drops to 1.0 atm. If the temperature stays constant, what new volume does the gas occupy? (a) 1.0 m3 (b) 1.5 m3 (c) 2.0 m3 (d) 0.12 m3 (e) 2.5 m3arrow_forwardA rigid, perfectly insulated container has a membrane dividing its volume in half. One side contains a gas at an absolute temperature T0 and pressure p0 , while the other half is completely empty. Suddenly a small hole develops in the membrane, allowing the gas to leak out into the other half until it eventually occupies twice its original volume. In terms of T0 and p0 , what will be the new temperature and pressure of the gas when it is distributed equally in both halves of the container? Explain your reasoning.arrow_forward
- A cylinder has a piston at one end that can be moved in or out to change the volume of gas inside. The other end is fitted with a valve. Initially the cylinder contains 2.85 mol of an ideal gas. The piston is now pushed in to decrease the volume of gas to two-fifths its initial value without causing any change in temperature. In order to keep the pressure constant as well, how many moles of gas need to be released through the valve?arrow_forward(a) A tank contains one mole of helium gas at a pressure of 6.35 atm and a temperature of 22.0°C. The tank (which has a fixed volume) is heated until the pressure inside triples. What is the final temperature of the gas? °C (b) A cylinder with a moveable piston contains one mole of helium, again at a pressure of 6.35 atm and a temperature of 22.0°C. Now, the cylinder is heated so that both the pressure inside and the volume of the cylinder double. What is the final temperature of the gas? °Carrow_forwardTwo thermally insulated vessels are connected by a narrow tube lined with a valve that is initially closed as shown in Figure P20.15. One vessel of volume 16.8 L contains oxygen at a temperature of 300 K and a pressure of 1.75 atm. The other vessel of volume 22.4 L contains oxygen at a temperature of 450 K and a pressure of 2.25 atm. When the valve is opened, the gases in the two vessels mix and the temperature and pressure become uniform throughout, (a) What is the final temperature? (b) What is the final pressure?arrow_forward
- A tank contains one mole of nitrogen gas at a pressure of 5.20 atm and a temperature of 24.5°C. The tank (which has a fixed volume) is heated until the pressure inside triples. What is the final temperature of the gas? °C (b)A cylinder with a moveable piston contains one mole of nitrogen, again at a pressure of 5.20 atm and a temperature of 24.5°C. Now, the cylinder is heated so that both the pressure inside and the volume of the cylinder double. What is the final temperature of the gas? °Carrow_forwardA high-pressure gas cylinder contains 70.0 L of toxic gas at a pressure of 1.40 x 107 N/m² and a temperature of 16.0°C. Its valve leaks after the cylinder is dropped. The cylinder is cooled to dry ice temperatures (-78.5°C), to reduce the leak rate and pressure so that it can be safely repaired. (a) What is the final pressure in the tank, assuming a negligible amount of gas leaks while being cooled and that there is no phase change? 9.42e6 N/m² (b) What is the final pressure if one-tenth of the gas escapes? 8.61e6 N/m² (c) To what temperature must the tank be cooled to reduce the pressure to 1.00 atm (assuming the gas does not change phase and that there is no leakage during cooling)? 2.14 Review the values for initial and final pressure for this situation. Karrow_forwardIf I contain 3 moles of gas in a container with a volume of 60 liters and at a temperature of 400 K, what is the pressure inside the container?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
A Level Physics – Ideal Gas Equation; Author: Atomi;https://www.youtube.com/watch?v=k0EFrmah7h0;License: Standard YouTube License, CC-BY