
(a)
The temperature after the adiabatic expansion.
(a)

Answer to Problem 47P
The temperature after the adiabatic expansion is
Explanation of Solution
Given:
The initial pressure of gas is
The initial temperature is
The final temperature is
Formula used:
The temperature after the adiabatic expansion is given as,
Here,
The volume after adiabatic expansion is given as,
Here,
The final pressure is given as,
Calculation:
The volume occupied by the gas at
For the fixed amount of gas the pressure at adiabatic expansion is can be calculated as,
The final pressure is calculated as,
The volume after adiabatic expansion is calculated as,
The temperature after the adiabatic expansion is calculated as,
Conclusion:
Therefore, the temperature after the adiabatic expansion is
(b)
The heat absorbed or released by the system during each step.
(b)

Answer to Problem 47P
The heat energy absorbed during the process 1-2 is
Explanation of Solution
Formula used:
The heat energy during the constant volume process 1-2 is given as,
Here,
Here,
The heat energy during the constant pressure process 3-1 is given as,
Here,
Calculation:
The heat energy during the constant volume process 1-2 is calculated as,
The process 2-3 is an adiabatic process. The heat energy for the process 2-3 is calculated as,
The heat energy during the constant pressure process 3-1 is given as,
The negative sign shows that heat is released during the process.
Conclusion:
Therefore, the heat energy absorbed during the process 1-2 is
(c)
The efficiency of the cycle.
(c)

Answer to Problem 47P
The efficiency of the cycle is
Explanation of Solution
Formula used:
The efficiency of the cycle is given as,
Here,
The total work during the cycle is given as,
Calculation:
The total work during the cycle is calculated as,
The efficiency of the cycle is calculated as,
Further solving the above equation as,
Conclusion:
Therefore, the efficiency of the cycle is
(d)
The efficiency of a Carnot cycle operating between the extreme temperatures.
(d)

Answer to Problem 47P
The efficiency of a Carnot cycle operating between the extreme temperatures is
Explanation of Solution
Formula used:
The efficiency of the Carnot cycle at extreme temperature (
Calculation:
The efficiency of the Carnot cycle at extreme temperature (
Further solving the above equation as,
Conclusion:
Therefore, the efficiency of a Carnot cycle operating between the extreme temperatures is
Want to see more full solutions like this?
Chapter 19 Solutions
Physics for Scientists and Engineers, Vol. 1
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
- Discuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forward
- A 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forwardFor each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forward
- Two complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forwardCalculate the center of mass of the hollow cone shown below. Clearly specify the origin and the coordinate system you are using. Z r Y h Xarrow_forward12. If all three collisions in the figure below are totally inelastic, which will cause more damage? (think about which collision has a larger amount of kinetic energy dissipated/lost to the environment? I m II III A. I B. II C. III m m v brick wall ע ע 0.5v 2v 0.5m D. I and II E. II and III F. I and III G. I, II and III (all of them) 2marrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





