(a)
The average time before molecules reach in left half of the box.
(a)
Answer to Problem 26P
The average time before molecules reach in left half of the box is
Explanation of Solution
Given:
The number of molecules is
The volume of the box is
Formula used:
The expression for average time is given as,
Here,
Calculation:
The average time for
Conclusion:
Therefore, the average time before molecules reach in left half of the box is
(b)
The average time before molecules reach in left half of the box.
(b)
Answer to Problem 26P
The average time before molecules reach in left half of the box is
Explanation of Solution
Given:
The number of molecules is
Calculation:
The average time for
Conclusion:
Therefore, the average time before molecules reach in left half of the box is
(c)
The average time before molecules reach in left half of the box.
(c)
Answer to Problem 26P
The average time before molecules reach in left half of the box is
Explanation of Solution
Given:
The number of molecules is
Calculation:
The average time for
The conversion of
Substitution of the conversion in equation (a) can be given as,
Conclusion:
Therefore, the average time before molecules reach in left half of the box is
(d)
The average time before molecules reach in left half of the box.
(d)
Answer to Problem 26P
The average time before molecules reach in left half of the box is
Explanation of Solution
Given:
The number of molecules is
Calculation:
The average time for
The conversion of
Substitution of the conversion in equation (2) can be given as,
Conclusion:
Therefore, the average time before molecules reach in left half of the box is
(e)
The physicist waiting time before all of the gas molecules in the vacuum chamber occupy only the left half of chamber and comparison with expected lifetime of the universe.
(e)
Answer to Problem 26P
The average time is
Explanation of Solution
Given:
The pressure at which best vacuum created is
The expected lifetime of the universe is
Formula used:
The expression for the ideal gas is given as,
Here,
The expression for the comparison is given as,
Calculation:
The number of moles in vacuum condition at
On further solving the above equation,
The average time of molecules in vacuum to occupy left half of the chamber can be calculated as,
The conversion of
Substitution of the conversion in equation (2) can be given as,
The comparison can be given as,
Conclusion:
Therefore, the average time is
Want to see more full solutions like this?
Chapter 19 Solutions
Physics for Scientists and Engineers, Vol. 1
- 3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons. Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.arrow_forwardNo chatgpt pls will upvotearrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: Incident ray at A Note: This diagram is not to scale. a Air (n = 1.00) Water (n = 1.34) 1) Determine the angle of refraction of the ray of light in the water. Barrow_forward
- Hi can u please solvearrow_forward6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from diffraction limited, with a spot size of more than 100 microns. Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert one extra line at the top of the merit function. Assign the…arrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answer .arrow_forward
- Use the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardGood explanation it sure experts solve it.arrow_forward
- No chatgpt pls will upvote Asaparrow_forwardA satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?arrow_forwardNo chatgpt pls will upvotearrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning