![Physics for Scientists and Engineers, Vol. 1](https://www.bartleby.com/isbn_cover_images/9781429201322/9781429201322_largeCoverImage.gif)
(a)
The average time before molecules reach in left half of the box.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 26P
The average time before molecules reach in left half of the box is
Explanation of Solution
Given:
The number of molecules is
The volume of the box is
Formula used:
The expression for average time is given as,
Here,
Calculation:
The average time for
Conclusion:
Therefore, the average time before molecules reach in left half of the box is
(b)
The average time before molecules reach in left half of the box.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 26P
The average time before molecules reach in left half of the box is
Explanation of Solution
Given:
The number of molecules is
Calculation:
The average time for
Conclusion:
Therefore, the average time before molecules reach in left half of the box is
(c)
The average time before molecules reach in left half of the box.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 26P
The average time before molecules reach in left half of the box is
Explanation of Solution
Given:
The number of molecules is
Calculation:
The average time for
The conversion of
Substitution of the conversion in equation (a) can be given as,
Conclusion:
Therefore, the average time before molecules reach in left half of the box is
(d)
The average time before molecules reach in left half of the box.
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 26P
The average time before molecules reach in left half of the box is
Explanation of Solution
Given:
The number of molecules is
Calculation:
The average time for
The conversion of
Substitution of the conversion in equation (2) can be given as,
Conclusion:
Therefore, the average time before molecules reach in left half of the box is
(e)
The physicist waiting time before all of the gas molecules in the vacuum chamber occupy only the left half of chamber and comparison with expected lifetime of the universe.
(e)
![Check Mark](/static/check-mark.png)
Answer to Problem 26P
The average time is
Explanation of Solution
Given:
The pressure at which best vacuum created is
The expected lifetime of the universe is
Formula used:
The expression for the ideal gas is given as,
Here,
The expression for the comparison is given as,
Calculation:
The number of moles in vacuum condition at
On further solving the above equation,
The average time of molecules in vacuum to occupy left half of the chamber can be calculated as,
The conversion of
Substitution of the conversion in equation (2) can be given as,
The comparison can be given as,
Conclusion:
Therefore, the average time is
Want to see more full solutions like this?
Chapter 19 Solutions
Physics for Scientists and Engineers, Vol. 1
- A solid sphere 22 cm in radius carries 17 μC, distributed uniformly throughout its volume. Part A Find the electric field strength 12 cm from the sphere's center. Express your answer using two significant figures. E₁ = ΜΕ ΑΣΦ ха Хь b Submit Previous Answers Request Answer <☑ × Incorrect; Try Again; 4 attempts remaining ▾ Part B ? |X| X.10" <☑ Find the electric field strength 22 cm from the sphere's center. Express your answer using two significant figures. ΜΕ ΑΣΦ E2 = Submit Request Answer ▾ Part C ? MN/C Find the electric field strength 44 cm from the sphere's center. Express your answer using two significant figures. ΕΠΙ ΑΣΦ E3 = Submit Request Answer ? MN/C MN/Carrow_forwardNo chatgpt plsarrow_forwardIn a naval battle, a battleship is attempting to fire on a destroyer. The battleship is a distance d1 = 2,150 m to the east of the peak of a mountain on an island, as shown in the figure below. The destroyer is attempting to evade cannon shells fired from the battleship by hiding on the west side of the island. The initial speed of the shells that the battleship fires is vi = 245 m/s. The peak of the mountain is h = 1,840 m above sea level, and the western shore of the island is a horizontal distance d2 = 250 m from the peak. What are the distances (in m), as measured from the western shore of the island, at which the destroyer will be safe from fire from the battleship? (Note the figure is not to scale. You may assume that the height and width of the destroyer are small compared to d1 and h.)arrow_forward
- No chatgpt plsarrow_forwardThe law of reflection applies to Question 14Select one: a. specular reflection b. irregular reflection c. All of these d. diffuse reflectionarrow_forwardAccording to your book "normal" human body temperature is considered to be ________? Select one: a. none of these b. 98.6°C c. 37°C d. 100°Carrow_forward
- Problem Seven. A football receiver running straight downfield at 5.60 m/s is 11.5 m in front of the quarterback when a pass is thrown downfield at an angle of 35.0° above the horizon. 8.) If the receiver never changes speed and the ball is caught at the same height from which it was thrown, find the distance between the quarterback and the receiver when the catch is made. (A) 21.3 (B) 17.8 (C) 18.8 (D) 19.9 (E) 67.5arrow_forwardWhen two bar magnets are near each other, the north pole of one of the magnets experiences what type of force from the other magnet? 1. both an attractive force and a repulsive force 2. a Coulomb force 3. only an attractive force 4. only a repulsive forcearrow_forwardWhat can be said about the electric force between two charged particles? It varies as 1/r. It depends only on the magnitudes of the charges. It is much, much greater than the attractive gravitational force. It is repulsive for unlike charges.arrow_forward
- A piece of copper originally 305mm long is pulled in tension with a stress of 276MPa. If the deformation is elastic, what will be the resultant elongation. E for copper is 110Gpaarrow_forwardPlease solve and answer the problem correctly please. Be sure to give explanations on each step and write neatly please. Thank you!!arrow_forwardIn the figures, the masses are hung from an elevator ceiling. Assume the velocity of the elevator is constant. Find the tensions in the ropes (in N) for each case. Note that 0₁ = 35.0°, 0₂ = 55.0°, 03 = 60.0°, m₁ = 3.00 kg, and m2 = 7.00 kg. (Due to the nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your calculations.) (a) Τι WY NY MY T3 e₁ T₁ = N = N = N (b) 18 Τι = Τι T3 = || || || = T T Ts m₂ N N N 02 T₂ T3 m₁arrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168161/9781938168161_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781111794378/9781111794378_smallCoverImage.gif)