(a)
The P - Vdiagram of the cycle, work done by the gas, heat absorbed by the gas and change in internal energy of the gas.
(a)
Answer to Problem 31P
The work done by the gas in each step are
Explanation of Solution
Given:
The initial pressure of the gas is
The initial volume of the gas is
The pressure at state 2 and 3 is
The volume at state 3 and 4 is
The pressure final pressure of the gas is
Formula used:
The expression for the specific heat ratio is given as,
Here,
The expression for heat absorbed by the gas in stage 1-2 is given as,
The expression for heat absorbed by the gas in stage 2-3 is given as,
The expression for heat absorbed by the gas in stage 3-4 is given as,
The expression for heat absorbed by the gas in stage 4-1 is given as,
The expression for the work done in stage 2-3 is given as,
The expression for the work done in stage 4-1 is given as,
The expression for change in internal energy in stage 1-2 is given as,
The expression for change in internal energy in stage 2-3 is given as,
The expression for change in internal energy in stage 3-4 is given as,
The expression for change in internal energy in stage 4-1 is given as,
Calculation:
The P-V diagram for the cycle can be given as,
Figure 1
For monoatomic gas specific heat at constant volume and constant pressure can be given as,
The specific heat ratio can be calculated as,
The heat absorbed by the gas in stage 1-2 can be calculated as,
The expression for heat absorbed by the gas in stage 2-3 is given as,
The expression for heat absorbed by the gas in stage 3-4 is given as,
The expression for heat absorbed by the gas in stage 4-1 is given as,
The work done in stage 1-2 is zero because it is constant volume process.
The work done in stage 2-3 can be calculated as,
The work done in stage 3-4 is zero because it is constant volume process.
The work done in stage 4-1 can be calculated as,
The expression for change in internal energy in stage 1-2 is given as,
The expression for change in internal energy in stage 2-3 is given as,
The expression for change in internal energy in stage 3-4 is given as,
The expression for change in internal energy in stage 4-1 is given as,
Conclusion:
Therefore,the work done by the gas in each step are
(b)
The efficiency of the cycle.
(b)
Answer to Problem 31P
The efficiency of the cycle is
Explanation of Solution
Formula used:
The expression for total heat supplied to the cycle is given as,
The expression for total work done in the cycle is given as,
The expression for efficiency of the cycle is given as,
Here,
Calculation:
The total heat supplied to the cycle can be calculated as,
The total work done in the cycle can be calculated as,
The efficiency of the cycle can be calculated as,
Conclusion:
Therefore, the efficiency of the cycle is
Want to see more full solutions like this?
Chapter 19 Solutions
Physics for Scientists and Engineers, Vol. 1
- 3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons. Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.arrow_forwardNo chatgpt pls will upvotearrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: Incident ray at A Note: This diagram is not to scale. a Air (n = 1.00) Water (n = 1.34) 1) Determine the angle of refraction of the ray of light in the water. Barrow_forward
- Hi can u please solvearrow_forward6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from diffraction limited, with a spot size of more than 100 microns. Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert one extra line at the top of the merit function. Assign the…arrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answer .arrow_forward
- Use the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardGood explanation it sure experts solve it.arrow_forward
- No chatgpt pls will upvote Asaparrow_forwardA satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?arrow_forwardNo chatgpt pls will upvotearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning