
DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 46RQ
To determine
The two distinctly difference metal forming processes which uses the term drawing.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A) In a factory, an s-type pitot tube was used to calculate the velocity of dry air for a point
inside a stack.
Calculate the velocity at that point (ft/sec) using following conditions:
●
•
•
Pressure = 30.23 ± 0.01 in Hg (ambient)
Pitot tube coefficient = 0.847 ± 0.03
Temperature = 122 ± 0.1 F (stack)
Temperature = 71.2 ± 0.1 F (ambient)
AP = 0.324 ± 0.008 in H2O (pitot tube)
•
AP = 0.891 ± 0.002 in H2O (stack)
B) Find the dominant error(s) when determining precision for the problem.
C) For part A, what is the precision in ft/sec for the velocity?
Q1/ For what value of x do the power series converge:
8
(-1)n-1.
x2n-1
2n-1
x3 x5
= X
n=1
3
Q2/ Find the Interval of convergence and Radius of convergence of the series:
8
n
Σ 3+1
n=1
(x)"
Example-1:
l
D
A uniform rotor of length 0.6 m and diameter 0.4 m is made of steel (density 7810 kg/m³)
is supported by identical short bearings of stiffness 1 MN/m in the horizontal and vertical
directions. If the distance between the bearings is 0.7 m, determine the natural frequencies
and plot whirl speed map.
Solution:
B
Chapter 19 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 19 - What distinguishes sheet forming from bulk...Ch. 19 - What is a definition of shearing?Ch. 19 - Prob. 3RQCh. 19 - What measures can be employed to improve the...Ch. 19 - How does fineblanking create shearing in a...Ch. 19 - Prob. 6RQCh. 19 - What types of cuts are made by squaring shears?Ch. 19 - Why might a long shearing cut be made in a...Ch. 19 - What is a slitting operation?Ch. 19 - What is the difference between piercing and...
Ch. 19 - Prob. 11RQCh. 19 - Prob. 12RQCh. 19 - Prob. 13RQCh. 19 - Prob. 14RQCh. 19 - Prob. 15RQCh. 19 - Prob. 16RQCh. 19 - What is the benefit of making dies as a multipiece...Ch. 19 - Prob. 18RQCh. 19 - Prob. 19RQCh. 19 - Prob. 20RQCh. 19 - Prob. 21RQCh. 19 - Prob. 22RQCh. 19 - When making bends in sheet metal, what is the...Ch. 19 - Prob. 24RQCh. 19 - Prob. 25RQCh. 19 - Why does a metal usually become thinner in the...Ch. 19 - Prob. 27RQCh. 19 - Prob. 28RQCh. 19 - Prob. 29RQCh. 19 - What types of operations can be performed on a...Ch. 19 - Prob. 31RQCh. 19 - Prob. 32RQCh. 19 - Prob. 33RQCh. 19 - Prob. 34RQCh. 19 - What is the primary benefit of incorporating a...Ch. 19 - Prob. 36RQCh. 19 - What is the benefit of using a urethane (rubber)...Ch. 19 - What is the objective of the roll bending process?Ch. 19 - What is the role of the form block in draw bending...Ch. 19 - Prob. 40RQCh. 19 - Prob. 41RQCh. 19 - Prob. 42RQCh. 19 - Prob. 43RQCh. 19 - Prob. 44RQCh. 19 - Prob. 45RQCh. 19 - Prob. 46RQCh. 19 - Prob. 47RQCh. 19 - Prob. 48RQCh. 19 - Prob. 49RQCh. 19 - Prob. 50RQCh. 19 - Prob. 51RQCh. 19 - Prob. 52RQCh. 19 - Prob. 53RQCh. 19 - What is the distinction between shallow drawing...Ch. 19 - What is the function of the pressure ring or...Ch. 19 - Prob. 56RQCh. 19 - Prob. 57RQCh. 19 - Prob. 58RQCh. 19 - Prob. 59RQCh. 19 - Prob. 60RQCh. 19 - Prob. 61RQCh. 19 - Prob. 62RQCh. 19 - Prob. 63RQCh. 19 - Prob. 64RQCh. 19 - Prob. 65RQCh. 19 - Prob. 66RQCh. 19 - Prob. 67RQCh. 19 - Prob. 68RQCh. 19 - Prob. 69RQCh. 19 - Prob. 70RQCh. 19 - Prob. 71RQCh. 19 - Prob. 72RQCh. 19 - Prob. 73RQCh. 19 - Prob. 74RQCh. 19 - Prob. 75RQCh. 19 - What are some of the basic methods that have been...Ch. 19 - Prob. 77RQCh. 19 - Prob. 78RQCh. 19 - Prob. 79RQCh. 19 - Prob. 80RQCh. 19 - Prob. 81RQCh. 19 - What properties from a uniaxial tensile test can...Ch. 19 - How is the formability in biaxial tension...Ch. 19 - What is normal anisotropy, R and planar...Ch. 19 - Prob. 85RQCh. 19 - Prob. 86RQCh. 19 - Prob. 87RQCh. 19 - Prob. 88RQCh. 19 - What two hot�forming operations can be used to...Ch. 19 - Prob. 90RQCh. 19 - What are the primary assets and limitations of...Ch. 19 - Prob. 92RQCh. 19 - Prob. 93RQCh. 19 - What are some of the attractive features of...Ch. 19 - What are some of the common types of press frames?Ch. 19 - What are some features that may be included into a...Ch. 19 - Prob. 97RQCh. 19 - Prob. 98RQCh. 19 - Prob. 99RQCh. 19 - Prob. 100RQCh. 19 - The maximum punch force in blanking can be...Ch. 19 - Prob. 2PCh. 19 - Prob. 3PCh. 19 - What are some of the techniques for minimizing the...Ch. 19 - Prob. 5PCh. 19 - Prob. 6PCh. 19 - Prob. 1CSCh. 19 - Prob. 2CSCh. 19 - Prob. 3CSCh. 19 - Polymeric materials have characteristically low...Ch. 19 - If adhesive bonding is specified as a replacement...Ch. 19 - Which of the material/process options do you feel...Ch. 19 - Prob. 7CSCh. 19 - Prob. 8CS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- find the laplace transform for the flowing function 2(1-e) Ans. F(s)=- S 12) k 0 Ans. F(s)= k s(1+e) 0 a 2a 3a 4a 13) 2+ Ans. F(s)= 1 s(1+e") 3 14) f(t)=1, 0arrow_forwardFind the solution of the following Differential Equations Using Laplace Transforms 1) 4y+2y=0. y(0)=2. y'(0)=0. 2) y+w²y=0, (0)=A, y'(0)=B. 3) +2y-8y 0. y(0)=1. y'(0)-8. 4)-2-3y=0, y(0)=1. y'(0)=7. 5) y-ky'=0, y(0)=2, y'(0)=k. 6) y+ky'-2k²y=0, y(0)=2, y'(0) = 2k. 7) '+4y=0, y(0)=2.8 8) y+y=17 sin(21), y(0)=-1. 9) y-y-6y=0, y(0)=6, y'(0)=13. 10) y=0. y(0)=4, y' (0)=0. 11) -4y+4y-0, y(0)=2.1. y'(0)=3.9 12) y+2y'+2y=0, y(0)=1, y'(0)=-3. 13) +7y+12y=21e". y(0)=3.5. y'(0)=-10. 14) "+9y=10e". y(0)=0, y'(0)=0. 15) +3y+2.25y=91' +64. y(0)=1. y'(0) = 31.5 16) -6y+5y-29 cos(2t). y(0)=3.2, y'(0)=6.2 17) y+2y+2y=0, y(0)=0. y'(0)=1. 18) y+2y+17y=0, y(0)=0. y'(0)=12. 19) y"-4y+5y=0, y(0)=1, y'(0)=2. 20) 9y-6y+y=0, (0)-3, y'(0)=1. 21) -2y+10y=0, y(0)=3, y'(0)=3. 22) 4y-4y+37y=0, y(0)=3. y'(0)=1.5 23) 4y-8y+5y=0, y(0)=0, y'(0)=1. 24) ++1.25y-0, y(0)=1, y'(0)=-0.5 25) y 2 cos(r). y(0)=2. y'(0) = 0. 26) -4y+3y-0, y(0)=3, y(0) 7. 27) y+2y+y=e y(0)=0. y'(0)=0. 28) y+2y-3y=10sinh(27), y(0)=0. y'(0)=4. 29)…arrow_forwardAuto Controls A union feedback control system has the following open loop transfer function where k>0 is a variable proportional gain i. for K = 1 , derive the exact magnitude and phase expressions of G(jw). ii) for K = 1 , identify the gaincross-over frequency (Wgc) [where IG(jo))| 1] and phase cross-overfrequency [where <G(jw) = - 180]. You can use MATLAB command "margin" to obtain there quantities. iii) Calculate gain margin (in dB) and phase margin (in degrees) ·State whether the closed-loop is stable for K = 1 and briefly justify your answer based on the margin . (Gain marginPhase margin) iv. what happens to the gain margin and Phase margin when you increase the value of K?you You can use for loop in MATLAB to check that.Helpful matlab commands : if, bode, margin, rlocus NO COPIED SOLUTIONSarrow_forwardThe 120 kg wheel has a radius of gyration of 0.7 m. A force P with a magnitude of 50 N is applied at the edge of the wheel as seen in the diagram. The coefficient of static friction is 0.3, and the coefficient of kinetic friction is 0.25. Find the acceleration and angular acceleration of the wheel.arrow_forwardAuto Controls Using MATLAB , find the magnitude and phase plot of the compensators NO COPIED SOLUTIONSarrow_forward4-81 The corner shown in Figure P4-81 is initially uniform at 300°C and then suddenly exposed to a convection environment at 50°C with h 60 W/m². °C. Assume the = 2 solid has the properties of fireclay brick. Examine nodes 1, 2, 3, 4, and 5 and deter- mine the maximum time increment which may be used for a transient numerical calculation. Figure P4-81 1 2 3 4 1 cm 5 6 1 cm 2 cm h, T + 2 cmarrow_forwardAuto Controls A union feedback control system has the following open loop transfer function where k>0 is a variable proportional gain i. for K = 1 , derive the exact magnitude and phase expressions of G(jw). ii) for K = 1 , identify the gaincross-over frequency (Wgc) [where IG(jo))| 1] and phase cross-overfrequency [where <G(jw) = - 180]. You can use MATLAB command "margin" to obtain there quantities. iii) Calculate gain margin (in dB) and phase margin (in degrees) ·State whether the closed-loop is stable for K = 1 and briefly justify your answer based on the margin . (Gain marginPhase margin) iv. what happens to the gain margin and Phase margin when you increase the value of K?you You can use for loop in MATLAB to check that.Helpful matlab commands : if, bode, margin, rlocus NO COPIED SOLUTIONSarrow_forwardAuto Controls Hand sketch the root Focus of the following transfer function How many asymptotes are there ?what are the angles of the asymptotes?Does the system remain stable for all values of K NO COPIED SOLUTIONSarrow_forward-400" 150" in Datum 80" 90" -280"arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License