KLEIN'S ORGANIC CHEMISTRY
3rd Edition
ISBN: 9781119423126
Author: Klein
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 45PP
Interpretation Introduction
Interpretation:
The IUPAC name for the given compound has to be provided.
Concept Introduction:
The IUPAC names of organic compounds are given by
IUPAC naming of bicyclic compounds:
- The total number of carbon in the molecule will give the root name, followed by a suffix which indicates the highest priority
functional group . - The numbering has to be started from one of the bridgehead and the longest path to the second bridgehead has to be followed. The numbering should be continued along the next longest path until all carbons are numbered.
- While numbering the parent chain, care must be taken to number in a direction that gives the functional group the lowest possible number.
- The number of carbon in each of the pathways between bridgehead carbons has to be found out and counted.
- The name should be start with the term “bicyclo”
R and S nomenclature:
It is used to assign the configuration for chiral centers in a molecule using CIP rules.
The CIP rules are as follows:
- Select the chiral center and assign the numbers according to the decreasing
atomic mass of atoms attached to it. - If the numbering follows clockwise direction then the atom is termed as R and if it follows anti-clockwise direction then molecule is termed as S.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Please help me solve this reaction.
Indicate the products obtained by mixing 2,2-dimethylpropanal with acetaldehyde and sodium ethoxide in ethanol.
Synthesize 2-Ethyl-3-methyloxirane from dimethyl(propyl)sulfonium iodide using the necessary organic or inorganic reagents. Draw the structures of the compounds.
Chapter 19 Solutions
KLEIN'S ORGANIC CHEMISTRY
Ch. 19.2 - Prob. 1LTSCh. 19.2 - Prob. 1PTSCh. 19.2 - Prob. 2PTSCh. 19.2 - APPLY the skill
Compounds with two ketone groups...Ch. 19.2 - Prob. 4ATSCh. 19.3 - Prob. 5CCCh. 19.4 - Prob. 6CCCh. 19.5 - Prob. 7CCCh. 19.5 - Prob. 2LTSCh. 19.5 - Prob. 8PTS
Ch. 19.5 - Prob. 9ATSCh. 19.5 - Prob. 10CCCh. 19.5 - Prob. 11CCCh. 19.5 - Prob. 12CCCh. 19.5 - Prob. 13CCCh. 19.6 - Prob. 3LTSCh. 19.6 - Prob. 14PTSCh. 19.6 - Prob. 15PTSCh. 19.6 - Prob. 16ATSCh. 19.6 - Prob. 17CCCh. 19.6 - Prob. 18CCCh. 19.6 - Prob. 20PTSCh. 19.6 - Prob. 21ATSCh. 19.6 - Prob. 22CCCh. 19.7 - Prob. 5LTSCh. 19.7 - Prob. 23PTSCh. 19.7 - Prob. 24ATSCh. 19.7 - Prob. 25CCCh. 19.8 - Prob. 26CCCh. 19.8 - Prob. 27CCCh. 19.9 - Prob. 28CCCh. 19.9 - Prob. 29CCCh. 19.10 - Prob. 30CCCh. 19.10 - Prob. 31CCCh. 19.10 - Prob. 32CCCh. 19.10 - Prob. 33CCCh. 19.10 - Prob. 6LTSCh. 19.10 - Prob. 34PTSCh. 19.10 - Prob. 35PTSCh. 19.10 - Prob. 36ATSCh. 19.10 - Prob. 37ATSCh. 19.10 - Prob. 38CCCh. 19.11 - Prob. 39CCCh. 19.12 - Prob. 7LTSCh. 19.12 - Prob. 40PTSCh. 19.12 - Prob. 41ATSCh. 19.13 - Prob. 42CCCh. 19 - Prob. 43PPCh. 19 - Prob. 44PPCh. 19 - Prob. 45PPCh. 19 - Prob. 46PPCh. 19 - Prob. 47PPCh. 19 - Prob. 48PPCh. 19 - Prob. 49PPCh. 19 - Prob. 50PPCh. 19 - Prob. 51PPCh. 19 - Prob. 52PPCh. 19 - Prob. 53PPCh. 19 - Prob. 54PPCh. 19 - Prob. 55PPCh. 19 - Prob. 56PPCh. 19 - Prob. 57PPCh. 19 - Prob. 58PPCh. 19 - Prob. 59PPCh. 19 - Prob. 60PPCh. 19 - Predict the major product(s) obtained when each of...Ch. 19 - Prob. 62PPCh. 19 - Prob. 63PPCh. 19 - Prob. 64PPCh. 19 - Prob. 65PPCh. 19 - Prob. 66PPCh. 19 - Prob. 67PPCh. 19 - Prob. 68PPCh. 19 - Prob. 69PPCh. 19 - Prob. 70PPCh. 19 - Prob. 71PPCh. 19 - Prob. 72PPCh. 19 - Prob. 73PPCh. 19 - Prob. 74IPCh. 19 - Prob. 75IPCh. 19 - Prob. 76IPCh. 19 - Prob. 77IPCh. 19 - Prob. 78IPCh. 19 - Prob. 79IPCh. 19 - Prob. 80IPCh. 19 - Prob. 81IPCh. 19 - Prob. 83IPCh. 19 - Prob. 84IPCh. 19 - Prob. 85IPCh. 19 - Prob. 86IPCh. 19 - Prob. 87IPCh. 19 - Prob. 88IPCh. 19 - Prob. 89IPCh. 19 - Prob. 90IPCh. 19 - Prob. 91IPCh. 19 - Prob. 92IPCh. 19 - Prob. 93IPCh. 19 - Prob. 94CPCh. 19 - Prob. 95CPCh. 19 - Treatment of the following ketone with LiAIHa...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Synthesize 2-Hydroxy-2-phenylacetonitrile from phenylmethanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- If possible, please provide the formula of the compound 3,3-dimethylbut-2-enal.arrow_forwardSynthesize 1,4-dibromobenzene from acetanilide (N-phenylacetamide) using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardIndicate the products obtained by mixing (3-oxo-3-phenylpropyl)triphenylphosphonium bromide with sodium hydride.arrow_forward
- We mix N-ethyl-2-hexanamine with excess methyl iodide and followed by heating with aqueous Ag2O. Indicate the major products obtained.arrow_forwardIndicate the products obtained by mixing acetophenone with iodine and NaOH.arrow_forwardIndicate the products obtained by mixing 2-Propanone and ethyllithium and performing a subsequent acid hydrolysis.arrow_forward
- Indicate the products obtained if (E)-2-butenal and 3-oxo-butanenitrile are mixed with sodium ethoxide in ethanol.arrow_forwardQuestion 3 (4 points), Draw a full arrow-pushing mechanism for the following reaction Please draw all structures clearly. Note that this intramolecular cyclization is analogous to the mechanism for halohydrin formation. COH Br + HBr Brarrow_forwardIndicate the products obtained if 2,2-dimethylpropanal and acetaldehyde are mixed with sodium ethoxide in ethanol.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Chapter 4 Alkanes and Cycloalkanes Lesson 2; Author: Linda Hanson;https://www.youtube.com/watch?v=AL_CM_Btef4;License: Standard YouTube License, CC-BY
Chapter 4 Alkanes and Cycloalkanes Lesson 1; Author: Linda Hanson;https://www.youtube.com/watch?v=PPIa6EHJMJw;License: Standard Youtube License