ORGANIC CHEMISTRY 1 TERM ACCESS
ORGANIC CHEMISTRY 1 TERM ACCESS
3rd Edition
ISBN: 9781119661511
Author: Klein
Publisher: WILEY
Question
Book Icon
Chapter 19, Problem 44PP

(a)

Interpretation Introduction

Interpretation:

The target molecule should be drawn for the given statements by using its molecular structure.

Concept introduction:

The structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.

IUPAC Nomenclature Method

Any organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix suffix and root word.

Prefix represents the substituent present in the molecule and its position in the root name.

Suffix denotes the presence of functional group if any in the molecule. It can be an alkane, alkene, alkyne, alcohol, aldehyde, carboxylic acid etc...

For alkynes molecules, suffix will be ‘yne’.

For example alkane molecule, suffix will be ‘ane’, compound presence of carbonyl group ‘one’ and presence of alcohol group suffix will be ‘ol

Root word represents the longest continuous carbon skeleton of the organic molecule.

Two stereoisomers are there for an saturated alkane molecule. It depends upon the location of bulky group (or high molecular weight) on the triple bonded carbon atoms. If the bulky groups are in same side then it is cis-isomer. If the bulky groups are in opposite side then it is trans-isomer.

To identify: The systematic structure for the given molecule

(b)

Interpretation Introduction

Interpretation:

The target molecule should be drawn for the given statements by using its molecular structure.

Concept introduction:

The structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.

IUPAC Nomenclature Method

Any organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix suffix and root word.

Prefix represents the substituent present in the molecule and its position in the root name.

Suffix denotes the presence of functional group if any in the molecule. It can be an alkane, alkene, alkyne, alcohol, aldehyde, carboxylic acid etc...

For alkynes molecules, suffix will be ‘yne’.

For example alkane molecule, suffix will be ‘ane’, compound presence of carbonyl group ‘one’ and presence of alcohol group suffix will be ‘ol

Root word represents the longest continuous carbon skeleton of the organic molecule.

Two stereoisomers are there for an saturated alkane molecule. It depends upon the location of bulky group (or high molecular weight) on the triple bonded carbon atoms. If the bulky groups are in same side then it is cis-isomer. If the bulky groups are in opposite side then it is trans-isomer.

To identify: The systematic structure for the given molecule

 (c)

Interpretation Introduction

Interpretation:

The target molecule should be drawn for the given statements by using its molecular structure.

Concept introduction:

The structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.

IUPAC Nomenclature Method

Any organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix suffix and root word.

Prefix represents the substituent present in the molecule and its position in the root name.

Suffix denotes the presence of functional group if any in the molecule. It can be an alkane, alkene, alkyne, alcohol, aldehyde, carboxylic acid etc...

For alkynes molecules, suffix will be ‘yne’.

For example alkane molecule, suffix will be ‘ane’, compound presence of carbonyl group ‘one’ and presence of alcohol group suffix will be ‘ol

Root word represents the longest continuous carbon skeleton of the organic molecule.

Two stereoisomers are there for an saturated alkane molecule. It depends upon the location of bulky group (or high molecular weight) on the triple bonded carbon atoms. If the bulky groups are in same side then it is cis-isomer. If the bulky groups are in opposite side then it is trans-isomer.

To identify: The systematic structure for the given molecule

(d)

Interpretation Introduction

Interpretation:

The target molecule should be drawn for the given statements by using its molecular structure.

Concept introduction:

The structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.

IUPAC Nomenclature Method

Any organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix suffix and root word.

Prefix represents the substituent present in the molecule and its position in the root name.

Suffix denotes the presence of functional group if any in the molecule. It can be an alkane, alkene, alkyne, alcohol, aldehyde, carboxylic acid etc...

For alkynes molecules, suffix will be ‘yne’.

For example alkane molecule, suffix will be ‘ane’, compound presence of carbonyl group ‘one’ and presence of alcohol group suffix will be ‘ol

Root word represents the longest continuous carbon skeleton of the organic molecule.

Two stereoisomers are there for an saturated alkane molecule. It depends upon the location of bulky group (or high molecular weight) on the triple bonded carbon atoms. If the bulky groups are in same side then it is cis-isomer. If the bulky groups are in opposite side then it is trans-isomer.

To identify: The systematic structure for the given molecule

(e)

Interpretation Introduction

Interpretation:

The target molecule should be drawn for the given statements by using its molecular structure.

Concept introduction:

The structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.

IUPAC Nomenclature Method

Any organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix suffix and root word.

Prefix represents the substituent present in the molecule and its position in the root name.

Suffix denotes the presence of functional group if any in the molecule. It can be an alkane, alkene, alkyne, alcohol, aldehyde, carboxylic acid etc...

For alkynes molecules, suffix will be ‘yne’.

For example alkane molecule, suffix will be ‘ane’, compound presence of carbonyl group ‘one’ and presence of alcohol group suffix will be ‘ol

Root word represents the longest continuous carbon skeleton of the organic molecule.

Two stereoisomers are there for an saturated alkane molecule. It depends upon the location of bulky group (or high molecular weight) on the triple bonded carbon atoms. If the bulky groups are in same side then it is cis-isomer. If the bulky groups are in opposite side then it is trans-isomer.

To identify: The systematic structure for the given molecule

(f)

Interpretation Introduction

Interpretation:

The target molecule should be drawn for the given statements by using its molecular structure.

Concept introduction:

The structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.

IUPAC Nomenclature Method

Any organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix suffix and root word.

Prefix represents the substituent present in the molecule and its position in the root name.

Suffix denotes the presence of functional group if any in the molecule. It can be an alkane, alkene, alkyne, alcohol, aldehyde, carboxylic acid etc...

For alkynes molecules, suffix will be ‘yne’.

For example alkane molecule, suffix will be ‘ane’, compound presence of carbonyl group ‘one’ and presence of alcohol group suffix will be ‘ol

Root word represents the longest continuous carbon skeleton of the organic molecule.

Two stereoisomers are there for an saturated alkane molecule. It depends upon the location of bulky group (or high molecular weight) on the triple bonded carbon atoms. If the bulky groups are in same side then it is cis-isomer. If the bulky groups are in opposite side then it is trans-isomer.

To identify: The systematic structure for the given molecule

(g)

Interpretation Introduction

Interpretation:

The target molecule should be drawn for the given statements by using its molecular structure.

Concept introduction:

The structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.

IUPAC Nomenclature Method

Any organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix suffix and root word.

Prefix represents the substituent present in the molecule and its position in the root name.

Suffix denotes the presence of functional group if any in the molecule. It can be an alkane, alkene, alkyne, alcohol, aldehyde, carboxylic acid etc...

For alkynes molecules, suffix will be ‘yne’.

For example alkane molecule, suffix will be ‘ane’, compound presence of carbonyl group ‘one’ and presence of alcohol group suffix will be ‘ol

Root word represents the longest continuous carbon skeleton of the organic molecule.

Two stereoisomers are there for an saturated alkane molecule. It depends upon the location of bulky group (or high molecular weight) on the triple bonded carbon atoms. If the bulky groups are in same side then it is cis-isomer. If the bulky groups are in opposite side then it is trans-isomer.

To identify: The systematic structure for the given molecule

(h)

Interpretation Introduction

Interpretation:

The target molecule should be drawn for the given statements by using its molecular structure.

Concept introduction:

The structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.

IUPAC Nomenclature Method

Any organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix suffix and root word.

Prefix represents the substituent present in the molecule and its position in the root name.

Suffix denotes the presence of functional group if any in the molecule. It can be an alkane, alkene, alkyne, alcohol, aldehyde, carboxylic acid etc...

For alkynes molecules, suffix will be ‘yne’.

For example alkane molecule, suffix will be ‘ane’, compound presence of carbonyl group ‘one’ and presence of alcohol group suffix will be ‘ol

Root word represents the longest continuous carbon skeleton of the organic molecule.

Two stereoisomers are there for an saturated alkane molecule. It depends upon the location of bulky group (or high molecular weight) on the triple bonded carbon atoms. If the bulky groups are in same side then it is cis-isomer. If the bulky groups are in opposite side then it is trans-isomer.

To identify: The systematic structure for the given molecule

(i)

Interpretation Introduction

Interpretation:

The target molecule should be drawn for the given statements by using its molecular structure.

Concept introduction:

The structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.

IUPAC Nomenclature Method

Any organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix suffix and root word.

Prefix represents the substituent present in the molecule and its position in the root name.

Suffix denotes the presence of functional group if any in the molecule. It can be an alkane, alkene, alkyne, alcohol, aldehyde, carboxylic acid etc...

For alkynes molecules, suffix will be ‘yne’.

For example alkane molecule, suffix will be ‘ane’, compound presence of carbonyl group ‘one’ and presence of alcohol group suffix will be ‘ol

Root word represents the longest continuous carbon skeleton of the organic molecule.

Two stereoisomers are there for an saturated alkane molecule. It depends upon the location of bulky group (or high molecular weight) on the triple bonded carbon atoms. If the bulky groups are in same side then it is cis-isomer. If the bulky groups are in opposite side then it is trans-isomer.

To identify: The systematic structure for the given molecule

Blurred answer
Students have asked these similar questions
What are the IUPAC Names of all the compounds in the picture?
1) a) Give the dominant Intermolecular Force (IMF) in a sample of each of the following compounds. Please show your work. (8) SF2, CH,OH, C₂H₂ b) Based on your answers given above, list the compounds in order of their Boiling Point from low to high. (8)
19.78 Write the products of the following sequences of reactions. Refer to your reaction road- maps to see how the combined reactions allow you to "navigate" between the different functional groups. Note that you will need your old Chapters 6-11 and Chapters 15-18 roadmaps along with your new Chapter 19 roadmap for these. (a) 1. BHS 2. H₂O₂ 3. H₂CrO4 4. SOCI₂ (b) 1. Cl₂/hv 2. KOLBU 3. H₂O, catalytic H₂SO4 4. H₂CrO4 Reaction Roadmap An alkene 5. EtOH 6.0.5 Equiv. NaOEt/EtOH 7. Mild H₂O An alkane 1.0 2. (CH3)₂S 3. H₂CrO (d) (c) 4. Excess EtOH, catalytic H₂SO OH 4. Mild H₂O* 5.0.5 Equiv. NaOEt/EtOH An alkene 6. Mild H₂O* A carboxylic acid 7. Mild H₂O* 1. SOC₁₂ 2. EtOH 3.0.5 Equiv. NaOEt/E:OH 5.1.0 Equiv. NaOEt 6. NH₂ (e) 1. 0.5 Equiv. NaOEt/EtOH 2. Mild H₂O* Br (f) i H An aldehyde 1. Catalytic NaOE/EtOH 2. H₂O*, heat 3. (CH,CH₂)₂Culi 4. Mild H₂O* 5.1.0 Equiv. LDA Br An ester 4. NaOH, H₂O 5. Mild H₂O* 6. Heat 7. MgBr 8. Mild H₂O* 7. Mild H₂O+

Chapter 19 Solutions

ORGANIC CHEMISTRY 1 TERM ACCESS

Ch. 19.5 - Prob. 9ATSCh. 19.5 - Prob. 10CCCh. 19.5 - Prob. 11CCCh. 19.5 - Prob. 12CCCh. 19.5 - Prob. 13CCCh. 19.6 - Prob. 3LTSCh. 19.6 - Prob. 14PTSCh. 19.6 - Prob. 15PTSCh. 19.6 - Prob. 16ATSCh. 19.6 - Prob. 17CCCh. 19.6 - Prob. 18CCCh. 19.6 - Prob. 20PTSCh. 19.6 - Prob. 21ATSCh. 19.6 - Prob. 22CCCh. 19.7 - Prob. 5LTSCh. 19.7 - Prob. 23PTSCh. 19.7 - Prob. 24ATSCh. 19.7 - Prob. 25CCCh. 19.8 - Prob. 26CCCh. 19.8 - Prob. 27CCCh. 19.9 - Prob. 28CCCh. 19.9 - Prob. 29CCCh. 19.10 - Prob. 30CCCh. 19.10 - Prob. 31CCCh. 19.10 - Prob. 32CCCh. 19.10 - Prob. 33CCCh. 19.10 - Prob. 6LTSCh. 19.10 - Prob. 34PTSCh. 19.10 - Prob. 35PTSCh. 19.10 - Prob. 36ATSCh. 19.10 - Prob. 37ATSCh. 19.10 - Prob. 38CCCh. 19.11 - Prob. 39CCCh. 19.12 - Prob. 7LTSCh. 19.12 - Prob. 40PTSCh. 19.12 - Prob. 41ATSCh. 19.13 - Prob. 42CCCh. 19 - Prob. 43PPCh. 19 - Prob. 44PPCh. 19 - Prob. 45PPCh. 19 - Prob. 46PPCh. 19 - Prob. 47PPCh. 19 - Prob. 48PPCh. 19 - Prob. 49PPCh. 19 - Prob. 50PPCh. 19 - Prob. 51PPCh. 19 - Prob. 52PPCh. 19 - Prob. 53PPCh. 19 - Prob. 54PPCh. 19 - Prob. 55PPCh. 19 - Prob. 56PPCh. 19 - Prob. 57PPCh. 19 - Prob. 58PPCh. 19 - Prob. 59PPCh. 19 - Prob. 60PPCh. 19 - Predict the major product(s) obtained when each of...Ch. 19 - Prob. 62PPCh. 19 - Prob. 63PPCh. 19 - Prob. 64PPCh. 19 - Prob. 65PPCh. 19 - Prob. 66PPCh. 19 - Prob. 67PPCh. 19 - Prob. 68PPCh. 19 - Prob. 69PPCh. 19 - Prob. 70PPCh. 19 - Prob. 71PPCh. 19 - Prob. 72PPCh. 19 - Prob. 73PPCh. 19 - Prob. 74IPCh. 19 - Prob. 75IPCh. 19 - Prob. 76IPCh. 19 - Prob. 77IPCh. 19 - Prob. 78IPCh. 19 - Prob. 79IPCh. 19 - Prob. 80IPCh. 19 - Prob. 81IPCh. 19 - Prob. 83IPCh. 19 - Prob. 84IPCh. 19 - Prob. 85IPCh. 19 - Prob. 86IPCh. 19 - Prob. 87IPCh. 19 - Prob. 88IPCh. 19 - Prob. 89IPCh. 19 - Prob. 90IPCh. 19 - Prob. 91IPCh. 19 - Prob. 92IPCh. 19 - Prob. 93IPCh. 19 - Prob. 94CPCh. 19 - Prob. 95CPCh. 19 - Treatment of the following ketone with LiAIHa...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY