(a)
Interpretation:
The target molecule should be drawn for the given statements by using its molecular structure.
Concept introduction:
The structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.
Any organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix suffix and root word.
Prefix represents the substituent present in the molecule and its position in the root name.
Suffix denotes the presence of
For
For example alkane molecule, suffix will be ‘ane’, compound presence of carbonyl group ‘one’ and presence of alcohol group suffix will be ‘ol’
Root word represents the longest continuous carbon skeleton of the organic molecule.
Two stereoisomers are there for an saturated alkane molecule. It depends upon the location of bulky group (or high molecular weight) on the triple bonded carbon atoms. If the bulky groups are in same side then it is cis-isomer. If the bulky groups are in opposite side then it is trans-isomer.
To identify: The systematic structure for the given molecule
(b)
Interpretation:
The target molecule should be drawn for the given statements by using its molecular structure.
Concept introduction:
The structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.
IUPAC Nomenclature Method
Any organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix suffix and root word.
Prefix represents the substituent present in the molecule and its position in the root name.
Suffix denotes the presence of functional group if any in the molecule. It can be an alkane, alkene, alkyne, alcohol, aldehyde, carboxylic acid etc...
For alkynes molecules, suffix will be ‘yne’.
For example alkane molecule, suffix will be ‘ane’, compound presence of carbonyl group ‘one’ and presence of alcohol group suffix will be ‘ol’
Root word represents the longest continuous carbon skeleton of the organic molecule.
Two stereoisomers are there for an saturated alkane molecule. It depends upon the location of bulky group (or high molecular weight) on the triple bonded carbon atoms. If the bulky groups are in same side then it is cis-isomer. If the bulky groups are in opposite side then it is trans-isomer.
To identify: The systematic structure for the given molecule
(c)
Interpretation:
The target molecule should be drawn for the given statements by using its molecular structure.
Concept introduction:
The structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.
IUPAC Nomenclature Method
Any organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix suffix and root word.
Prefix represents the substituent present in the molecule and its position in the root name.
Suffix denotes the presence of functional group if any in the molecule. It can be an alkane, alkene, alkyne, alcohol, aldehyde, carboxylic acid etc...
For alkynes molecules, suffix will be ‘yne’.
For example alkane molecule, suffix will be ‘ane’, compound presence of carbonyl group ‘one’ and presence of alcohol group suffix will be ‘ol’
Root word represents the longest continuous carbon skeleton of the organic molecule.
Two stereoisomers are there for an saturated alkane molecule. It depends upon the location of bulky group (or high molecular weight) on the triple bonded carbon atoms. If the bulky groups are in same side then it is cis-isomer. If the bulky groups are in opposite side then it is trans-isomer.
To identify: The systematic structure for the given molecule
(d)
Interpretation:
The target molecule should be drawn for the given statements by using its molecular structure.
Concept introduction:
The structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.
IUPAC Nomenclature Method
Any organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix suffix and root word.
Prefix represents the substituent present in the molecule and its position in the root name.
Suffix denotes the presence of functional group if any in the molecule. It can be an alkane, alkene, alkyne, alcohol, aldehyde, carboxylic acid etc...
For alkynes molecules, suffix will be ‘yne’.
For example alkane molecule, suffix will be ‘ane’, compound presence of carbonyl group ‘one’ and presence of alcohol group suffix will be ‘ol’
Root word represents the longest continuous carbon skeleton of the organic molecule.
Two stereoisomers are there for an saturated alkane molecule. It depends upon the location of bulky group (or high molecular weight) on the triple bonded carbon atoms. If the bulky groups are in same side then it is cis-isomer. If the bulky groups are in opposite side then it is trans-isomer.
To identify: The systematic structure for the given molecule
(e)
Interpretation:
The target molecule should be drawn for the given statements by using its molecular structure.
Concept introduction:
The structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.
IUPAC Nomenclature Method
Any organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix suffix and root word.
Prefix represents the substituent present in the molecule and its position in the root name.
Suffix denotes the presence of functional group if any in the molecule. It can be an alkane, alkene, alkyne, alcohol, aldehyde, carboxylic acid etc...
For alkynes molecules, suffix will be ‘yne’.
For example alkane molecule, suffix will be ‘ane’, compound presence of carbonyl group ‘one’ and presence of alcohol group suffix will be ‘ol’
Root word represents the longest continuous carbon skeleton of the organic molecule.
Two stereoisomers are there for an saturated alkane molecule. It depends upon the location of bulky group (or high molecular weight) on the triple bonded carbon atoms. If the bulky groups are in same side then it is cis-isomer. If the bulky groups are in opposite side then it is trans-isomer.
To identify: The systematic structure for the given molecule
(f)
Interpretation:
The target molecule should be drawn for the given statements by using its molecular structure.
Concept introduction:
The structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.
IUPAC Nomenclature Method
Any organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix suffix and root word.
Prefix represents the substituent present in the molecule and its position in the root name.
Suffix denotes the presence of functional group if any in the molecule. It can be an alkane, alkene, alkyne, alcohol, aldehyde, carboxylic acid etc...
For alkynes molecules, suffix will be ‘yne’.
For example alkane molecule, suffix will be ‘ane’, compound presence of carbonyl group ‘one’ and presence of alcohol group suffix will be ‘ol’
Root word represents the longest continuous carbon skeleton of the organic molecule.
Two stereoisomers are there for an saturated alkane molecule. It depends upon the location of bulky group (or high molecular weight) on the triple bonded carbon atoms. If the bulky groups are in same side then it is cis-isomer. If the bulky groups are in opposite side then it is trans-isomer.
To identify: The systematic structure for the given molecule
(g)
Interpretation:
The target molecule should be drawn for the given statements by using its molecular structure.
Concept introduction:
The structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.
IUPAC Nomenclature Method
Any organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix suffix and root word.
Prefix represents the substituent present in the molecule and its position in the root name.
Suffix denotes the presence of functional group if any in the molecule. It can be an alkane, alkene, alkyne, alcohol, aldehyde, carboxylic acid etc...
For alkynes molecules, suffix will be ‘yne’.
For example alkane molecule, suffix will be ‘ane’, compound presence of carbonyl group ‘one’ and presence of alcohol group suffix will be ‘ol’
Root word represents the longest continuous carbon skeleton of the organic molecule.
Two stereoisomers are there for an saturated alkane molecule. It depends upon the location of bulky group (or high molecular weight) on the triple bonded carbon atoms. If the bulky groups are in same side then it is cis-isomer. If the bulky groups are in opposite side then it is trans-isomer.
To identify: The systematic structure for the given molecule
(h)
Interpretation:
The target molecule should be drawn for the given statements by using its molecular structure.
Concept introduction:
The structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.
IUPAC Nomenclature Method
Any organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix suffix and root word.
Prefix represents the substituent present in the molecule and its position in the root name.
Suffix denotes the presence of functional group if any in the molecule. It can be an alkane, alkene, alkyne, alcohol, aldehyde, carboxylic acid etc...
For alkynes molecules, suffix will be ‘yne’.
For example alkane molecule, suffix will be ‘ane’, compound presence of carbonyl group ‘one’ and presence of alcohol group suffix will be ‘ol’
Root word represents the longest continuous carbon skeleton of the organic molecule.
Two stereoisomers are there for an saturated alkane molecule. It depends upon the location of bulky group (or high molecular weight) on the triple bonded carbon atoms. If the bulky groups are in same side then it is cis-isomer. If the bulky groups are in opposite side then it is trans-isomer.
To identify: The systematic structure for the given molecule
(i)
Interpretation:
The target molecule should be drawn for the given statements by using its molecular structure.
Concept introduction:
The structure the carbon atoms and the hydrogen atoms which are attached to that carbon atom are not to show, rather the bonds in between carbon atoms and to the hetero atoms are drawn as line segments. For acyclic, linear carbon chains it draws as in a zig-zag fashion and for cyclic chains of carbon it draws as a cyclic polygon. For representing a heteroatom attached to the carbon, use a line segment and label the heteroatom at the end of their line segment.
IUPAC Nomenclature Method
Any organic molecule can be named by using certain rules given by IUPAC (International Union for Pure and applied chemistry). IUPAC name consists of three parts in major namely Prefix suffix and root word.
Prefix represents the substituent present in the molecule and its position in the root name.
Suffix denotes the presence of functional group if any in the molecule. It can be an alkane, alkene, alkyne, alcohol, aldehyde, carboxylic acid etc...
For alkynes molecules, suffix will be ‘yne’.
For example alkane molecule, suffix will be ‘ane’, compound presence of carbonyl group ‘one’ and presence of alcohol group suffix will be ‘ol’
Root word represents the longest continuous carbon skeleton of the organic molecule.
Two stereoisomers are there for an saturated alkane molecule. It depends upon the location of bulky group (or high molecular weight) on the triple bonded carbon atoms. If the bulky groups are in same side then it is cis-isomer. If the bulky groups are in opposite side then it is trans-isomer.
To identify: The systematic structure for the given molecule
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
Organic Chemistry Third Edition + Electronic Solutions Manual And Study Guide
- Convert the following structures into a chair representation. Then conduct a chair flip. Cl a. b. C\.... оarrow_forwardAktiv Learning App Cengage Digital Learning Part of Speech Table for Assign x o Mail-Karen Ento-Outlook * + app.aktiv.com Your Aktiv Learning trial expires on 02/06/25 at 01:15 PM Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Problem 17 of 30 Drawing Arrows heat 4 O M B D 5x H H Und Settings H Done :0: H Jararrow_forwardConvert the following chairs into ring representations: a. Brz b.arrow_forward
- Drawing Arrows 1 I I 1 heat 1 51 MO + Drag To Und Settings Done 0 0 Jan 31 3:5arrow_forwardDon't used hand raitingarrow_forwardGramicidin A can adopt more than one structure; NMR spectroscopy has revealed an “end-to-end” dimer form, and x-ray crystallography has revealed an “anti-parallel double- helical” form. Briefly outline and describe an experimentalapproach/strategy to investigate WHICH configuration (“end-to-end dimer” vs “anti-paralleldouble helical”) gramicidin adopts in an actual lipid bilayer.arrow_forward
- Don't used hand raitingarrow_forwardCHEM2323 Problem 2-24 Tt O e: ל Predict the product(s) of the following acid/base reactions. Draw curved arrows to show the formation and breaking of bonds. If the bonds needed are not drawn out, you should redraw them. + BF3 (a) (b) HI + (c) OH -BF Problem 2-25 Use curved arrows and a proton (H+) to draw the protonated form of the following Lewis bases. Before starting, add all missing lone pairs. (a) (b) :0: (c) N 1 CHEM2323 PS CH02 Name:arrow_forwardCHEM2323 Problem 2-26 Tt O PS CH02 Name: Use the curved-arrow formalism to show how the electrons flow in the resonance form on the left to give the one on the right. (Draw all lone pairs first) (a) NH2 NH2 + (b) Problem 2-27 Double bonds can also act like Lewis bases, sharing their electrons with Lewis acids. Use curved arrows to show how each of the following double bonds will react with H-Cl and draw the resulting carbocation. (a) H2C=CH2 (b) (c) Problem 2-28 Identify the most electronegative element in each of the following molecules: (a) CH2FCI F Problem 2-29 (b) FCH2CH2CH2Br (c) HOCH2CH2NH2 (d) CH3OCH2Li F 0 0 Use the electronegativity table in Figure 2.3 to predict which bond in the following pairs is more polar and indicate the direction of bond polarity for each compound. (a) H3C-Cl or Cl-CI (b) H3C-H or H-CI (c) HO-CH3 or (CH3)3Si-CH3 (d) H3C-Li or Li-OHarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY