PHYSICS
PHYSICS
5th Edition
ISBN: 2818440038631
Author: GIAMBATTISTA
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 19, Problem 42P

(a)

To determine

The speed of the proton as it leaves region 1 and enters region 2.

(a)

Expert Solution
Check Mark

Answer to Problem 42P

The speed of the proton as it leaves region 1 and enters region 2 is 7.99×105m/s.

Explanation of Solution

The potential difference in region 1 is 3330V. The magnetic field in region 2 and region 3 is 1.20T. There is electric field in region 2.

As the proton passes out of region 1, the potential energy due to the potential difference is converted into kinetic energy.

    eΔV=12mv2

Here, e is the charge in proton, ΔV is the potential difference, m is the mass, v is the speed.

Re-write the above equation to get an expression for v.

    v=2eΔVm

Conclusion:

Substitute 1.602×1019C for e, 3330V for ΔV, 1.673×1027kg for m.

    v=2(1.602×1019C)(3330V)1.673×1027kg=7.99×105m/s

The speed of the proton as it leaves region 1 and enters region 2 is 7.99×105m/s.

(b)

To determine

The magnitude and direction of the electric field in region 2 if the proton moves in straight line in region 2.

(b)

Expert Solution
Check Mark

Answer to Problem 42P

The magnitude of the electric field is 9.58×105V/m and the direction of the electric field is towards north.

Explanation of Solution

The potential difference in region 1 is 3330V. The magnetic field in region 2 and region 3 is 1.20T. There is electric field in region 2.

If the proton moves in straight line in region 2, the magnetic force is balanced by the electric force.

    eE=evB

Here, e is the charge in proton, E is the electric field, B is the magnetic field, v is the speed.

Re-write the above equation to get an expression for E.

    E=vB

The direction of the magnetic force is determined by right hand rule. The magnetic field is directed upward, the velocity of the proton is east ward. Thus by right hand rule the magnetic force will be towards south direction.

Conclusion:

Substitute 7.99×105m/s for v, 1.20T for B.

    E=(7.99×105m/s)(1.20T)=9.58×105V/m

To cancel the magnetic force, the electric field has to be in the opposite direction of the magnetic force. Thus the direction of the electric field is towards north.

The magnitude of the electric field is 9.58×105V/m and the direction of the electric field is towards north.

(c)

To determine

The path of the proton in region 3.

(c)

Expert Solution
Check Mark

Answer to Problem 42P

In region 3 the proton follows the path 2.

Explanation of Solution

The potential difference in region 1 is 3330V. The magnetic field in region 2 and region 3 is 1.20T. There is electric field in region 2.

The direction of the magnetic force is determined by right hand rule. The magnetic field is directed upward, the velocity of the proton is east ward. Thus by right hand rule the magnetic force will be towards south direction.

In region 3 there is only magnetic field. Thus the force on the proton is only the magnetic force. Thus the force on the proton is directed in south direction so it follows the path 2.

Conclusion:

In region 3 the proton follows the path 2.

(d)

To determine

The radius of the circular path in region 3.

(d)

Expert Solution
Check Mark

Answer to Problem 42P

The radius of the circular path in region 3 is 6.95mm.

Explanation of Solution

The potential difference in region 1 is 3330V. The magnetic field in region 2 and region 3 is 1.20T. There is electric field in region 2.

The magnetic force makes the proton move in circular path. Thus the magnetic force is equal to the centripetal force.

    evB=mv2r

Here, e is the charge in proton, B is the magnetic field, m is the mass, v is the speed, r is the radius of the circular path.

Re-write the above equation to get an expression for r.

    r=mveB

Conclusion:

Substitute 1.602×1019C for e, 1.20T for B, 1.673×1027kg for m, 7.99×105m/s for v.

    r=(1.673×1027kg)(7.99×105m/s)(1.602×1019C)(1.20T)=6.95mm

The radius of the circular path in region 3 is 6.95mm.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
suggest a reason ultrasound cleaning is better than cleaning by hand?
Checkpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)
What is integrated science. What is fractional distillation What is simple distillation

Chapter 19 Solutions

PHYSICS

Ch. 19.6 - 19.6 Suppose the magnetic field in Fig. 19.28 were...Ch. 19.6 - 19.8 Magnetic Force on a Current-Carrying Wire A...Ch. 19.7 - CHECKPOINT 19.7 Suppose the coil of wire in Fig....Ch. 19.7 - Practice Problem 19.9 Torque on a Coil Starting...Ch. 19.8 - 19.8 What is the direction of the magnetic field...Ch. 19.8 - 19.10 Field Midway Between Two Wires Find the...Ch. 19.9 - Prob. 19.11PPCh. 19 - Prob. 1CQCh. 19 - Prob. 2CQCh. 19 - Prob. 3CQCh. 19 - Prob. 4CQCh. 19 - Prob. 5CQCh. 19 - Prob. 6CQCh. 19 - Prob. 7CQCh. 19 - Prob. 8CQCh. 19 - Prob. 9CQCh. 19 - Prob. 10CQCh. 19 - Prob. 11CQCh. 19 - Prob. 12CQCh. 19 - Prob. 13CQCh. 19 - Prob. 14CQCh. 19 - Prob. 15CQCh. 19 - Prob. 16CQCh. 19 - Prob. 17CQCh. 19 - Prob. 18CQCh. 19 - Prob. 19CQCh. 19 - Prob. 20CQCh. 19 - Prob. 21CQCh. 19 - Prob. 22CQCh. 19 - Prob. 23CQCh. 19 - Prob. 1MCQCh. 19 - Prob. 2MCQCh. 19 - Multiple-Choice Questions 1-4. In the figure, four...Ch. 19 - Prob. 4MCQCh. 19 - Prob. 5MCQCh. 19 - Prob. 6MCQCh. 19 - Prob. 7MCQCh. 19 - Prob. 8MCQCh. 19 - Multiple-Choice Questions 6-9. A wire carries...Ch. 19 - Prob. 10MCQCh. 19 - 11. The magnetic forces that two parallel wires...Ch. 19 - Prob. 12MCQCh. 19 - 1. At which point in the diagram is the magnetic...Ch. 19 - 2. Draw vector arrows to indicate the direction...Ch. 19 - Problems 3-6. Sketch some magnetic field lines for...Ch. 19 - Prob. 4PCh. 19 - Prob. 5PCh. 19 - Problems 3–6. Sketch some magnetic field lines for...Ch. 19 - 7. Find the magnetic force exerted on an electron...Ch. 19 - 8. Find the magnetic force exerted on a proton...Ch. 19 - 9. A uniform magnetic field points north; its...Ch. 19 - 10. A uniform magnetic field points vertically...Ch. 19 - Problems 11-14. Several electrons move at speed...Ch. 19 - 12. Find the magnetic force on the electron at...Ch. 19 - 12. Find the magnetic force on the electron at...Ch. 19 - Problems 11-14. Several electrons move at speed...Ch. 19 - 15. A magnet produces a 0.30 T field between its...Ch. 19 - 16. At a certain point on Earth’s surface in the...Ch. 19 - 17. A cosmic ray muon with the same charge as an...Ch. 19 - 18. In a CRT. electrons moving at 1.8 × 107 m/s...Ch. 19 - 19. A positron (q = +e) moves at 5.0 × 107 m/s in...Ch. 19 - 20. ✦ An electron moves with speed 2.0 × 105 m/s...Ch. 19 - 21. ✦ An electron moves with speed 2.0 × 105 m/s...Ch. 19 - 19.3 Charged Particle Moving Perpendicularly to a...Ch. 19 - 23. Six protons move (at speed v) in magnetic...Ch. 19 - 24. An electron moves at speed 8.0 × 105 m/s in a...Ch. 19 - 25. The magnetic field in a hospital’s cyclotron...Ch. 19 - 26. The magnetic field in a cyclotron used in...Ch. 19 - 27. The magnetic field in a cyclotron used to...Ch. 19 - 28. A beam of α particles (helium nuclei) is used...Ch. 19 - 29. A singly charged ion of unknown mass moves in...Ch. 19 - 30. In one type of mass spectrometer, ions having...Ch. 19 - 31. Natural carbon consists of two different...Ch. 19 - 32. After being accelerated through a potential...Ch. 19 - 33. A sample containing carbon (atomic mass 12 u),...Ch. 19 - Prob. 34PCh. 19 - 35. Show that the time for one revolution of a...Ch. 19 - 36. Crossed electric and magnetic fields are...Ch. 19 - 37. A current I = 40.0 A flows through a strip of...Ch. 19 - 38. In Problem 37, if the width of the strip is...Ch. 19 - 39. In Problem 37, the width of the strip is 3.5...Ch. 19 - 40. The strip in the diagram is used as a Hall...Ch. 19 - 41. A strip of copper 2.0 cm wide carries a...Ch. 19 - Prob. 42PCh. 19 - 43. An electromagnetic flowmeter is used to...Ch. 19 - 44. A charged particle is accelerated from rest...Ch. 19 - 45. A straight wire segment of length 0.60 m...Ch. 19 - 46. A straight wire segment of length 25 cm...Ch. 19 - 47. Parallel conducting tracks, separated by 2.0...Ch. 19 - 48. An electromagnetic rail gun can fire a...Ch. 19 - 49. A straight, stiff wire of length 1.00 m and...Ch. 19 - Prob. 50PCh. 19 - Prob. 51PCh. 19 - Prob. 52PCh. 19 - 53. ✦ A straight wire is aligned east-west in a...Ch. 19 - 54. A straight wire is aligned north-south in a...Ch. 19 - 55. In each of six electric motors, a cylindrical...Ch. 19 - 56. In an electric motor, a circular coil with...Ch. 19 - 57. In an electric motor, a coil with 100 turns of...Ch. 19 - 58. A square loop of wire of side 3.0 cm carries...Ch. 19 - 59. The intrinsic magnetic dipole moment of the...Ch. 19 - 60. In a simple model, the electron in a hydrogen...Ch. 19 - 61. A certain fixed length L of wire carries a...Ch. 19 - 62. Use the following method to show that the...Ch. 19 - 63. A square loop of wire with side 0.60 m carries...Ch. 19 - Prob. 64PCh. 19 - 65. Estimate the magnetic field at distances of...Ch. 19 - Prob. 66PCh. 19 - 67. Kieran measures the magnetic field of an...Ch. 19 - 68. Two wires each carry 10.0 A of current (in...Ch. 19 - In Problem 67, what is the magnetic field at a...Ch. 19 - What is the magnetic field at point P if the...Ch. 19 - 70. Point P is midway between two long, straight,...Ch. 19 - 70. Point P is midway between two long, straight,...Ch. 19 - Prob. 72PCh. 19 - Prob. 73PCh. 19 - 74. Two long straight wires carry the same amount...Ch. 19 - 75. In Problem 74, find the magnetic field at...Ch. 19 - 76. In Problem 74, find the magnetic field at...Ch. 19 - 77. A solenoid of length 0.256 m and radius 2.0 cm...Ch. 19 - 78. Two long straight parallel wires separated by...Ch. 19 - Prob. 79PCh. 19 - Two concentric circular wire loops in the same...Ch. 19 - 81. You are designing the main solenoid for an MRI...Ch. 19 - 82. A solenoid has 4850 turns per meter and radius...Ch. 19 - 83. Find the magnetic field at the center of the...Ch. 19 - 84. Find the magnetic field at point P, the...Ch. 19 - Prob. 85PCh. 19 - Prob. 86PCh. 19 - Prob. 87PCh. 19 - 88. A number of wires carry currents into or out...Ch. 19 - 89. ✦ An infinitely long, thick cylindrical shell...Ch. 19 - 90. In this problem, use Ampère’s law to show...Ch. 19 - Prob. 91PCh. 19 - Prob. 92PCh. 19 - Prob. 93PCh. 19 - Prob. 94PCh. 19 - Prob. 95PCh. 19 - Prob. 96PCh. 19 - Prob. 97PCh. 19 - Prob. 98PCh. 19 - Prob. 99PCh. 19 - Prob. 100PCh. 19 - Prob. 101PCh. 19 - Prob. 102PCh. 19 - Prob. 103PCh. 19 - Prob. 104PCh. 19 - Prob. 105PCh. 19 - 106. Two conducting wires perpendicular to the...Ch. 19 - Prob. 107PCh. 19 - Prob. 108PCh. 19 - 110. A solenoid with 8500 turns per meter has...Ch. 19 - Prob. 109PCh. 19 - Prob. 111PCh. 19 - Prob. 115PCh. 19 - Prob. 112PCh. 19 - Prob. 113PCh. 19 - Prob. 114PCh. 19 - Prob. 117PCh. 19 - Prob. 116PCh. 19 - Prob. 118PCh. 19 - Prob. 120PCh. 19 - Prob. 121PCh. 19 - Prob. 122PCh. 19 - Prob. 123PCh. 19 - Prob. 124PCh. 19 - Prob. 125PCh. 19 - Prob. 126PCh. 19 - Prob. 127PCh. 19 - Prob. 128P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY