
Concept explainers
(a)
The change in kinetic energy of the disk.
(a)

Answer to Problem 35AP
Explanation of Solution
Given info: The radius of copper disk is
Write the equation for change in kinetic energy of the disk.
Here,
Write the equation of conservation of
Substitute
Write the formula for initial moment of inertia
Here,
m is the mass of the disk.
r is the radius of disk.
t is the thickness of copper disk.
The density of copper is
Substitute
Write the equation of conservation of angular momentum to calculate the final angular speed of the disk.
Further solve the above equation to calculate the final angular speed of the disk.
Here,
The value of coefficient of linear expansion
Substitute
Substitute
Conclusion:
Therefore, the change in kinetic energy of the disk is
(b)
The change in internal energy of the disk.
(b)

Answer to Problem 35AP
Explanation of Solution
Given info: The radius of copper disk is
Write the equation to calculate the change in internal energy of the disk.
Here,
Q is the energy required to change the temperature of substance.
c is the specific heat of the copper disk.
Specific heat of copper disk is
Substitute
Conclusion:
Therefore, the change in internal energy of the disk is
(c)
The amount of radiated energy.
(c)

Answer to Problem 35AP
Explanation of Solution
Given info: The radius of copper disk is
Write the equation for change in kinetic energy of the disk to calculate the amount of radiated energy.
Here,
Substitute
Conclusion:
Therefore, the amount of radiated energy is
Want to see more full solutions like this?
Chapter 19 Solutions
Physics for Scientists and Engineers
- Pls help asaparrow_forward3. If the force of gravity stopped acting on the planets in our solar system, what would happen? a) They would spiral slowly towards the sun. b) They would continue in straight lines tangent to their orbits. c) They would continue to orbit the sun. d) They would fly straight away from the sun. e) They would spiral slowly away from the sun. 4. 1 The free-body diagram of a wagon being pulled along a horizontal surface is best represented by A F N B C 0 Ꭰ FN E a) A b) B c) C app app The app 10 app d) e) ס ח D E 10 apparrow_forwardPls help ASAParrow_forward
- Pls help asaparrow_forwardPls help asaparrow_forwardThe acceleration of an object sliding along a frictionless ramp is inclined at an angle 0 is 9. a) g tano b) g cose c) g sino 10. d) g e) zero A 1.5 kg cart is pulled with a force of 7.3 N at an angle of 40° above the horizontal. If a kinetic friction force of 3.2 N acts against the motion, the cart's acceleration along the horizontal surface will be a) 5.0 m/s² b) 1.6 m/s² c) 2.4 m/s² 11. d) 1.0 m/s² e) 2.7 m/s² What is the net force acting on an object with a mass of 10 kg moving at a constant velocity of 10 m/s [North]? a) 100 N [North] b) 100 N [South] 10 N [North} d) 10 N [South] e) None of these.arrow_forward
- Modified True/False - indicate whether the sentence or statement is true or false. If the statement is false, correct the statement to make it true. 12. An object in uniform circular motion has a constant velocity while experiencing centripetal acceleration. 13. An object travelling in uniform circular motion experiences an outward centrifugal force that tends to pull the object out of the circular path. 14. An object with less inertia can resist changes in motion more than an object with more inertia. 15. For an object sliding on a horizontal surface with a horizontal applied force, the frictional force will always increase as the applied force increases.arrow_forwardPls help asaparrow_forwardAnswer the given question showing step by step by and all necessary working out.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





