Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
4th Edition
ISBN: 9780132273244
Author: Doug Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 33Q
(a)
To determine
The mechanism of
(b)
To determine
The type of heat loss reduced with the help of a curtain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Heat loss occurs through windows by the following processes: (1) through the glass panes; (2) through the frame, particularly if it is metal; (3) ventilation around edges; and (4) radiation. (a) For the first three, what is (are) the mechanism(s): conduction, convection, or radiation?(b) Heavy curtains reduce which of these heat losses? Explain in detail.
Answer step by step.
Subject: Thermodynamics and Heat Transfer
With reference to Kinetic Theory; explain the process of thermal expansion.
Outline ONE (1) useful applications ofthermal expansion.
A temperature control system is operated by the expansion of a zinc rod which is 200 mm long at 15 0 Ifthe svstem is set so that the source of heat supply is cut off when the rod has expanded by 0.20 mm, determine the temperature to which the system is limited.
Assume the coeff±zoflinearexpansionofzinctobe31 x 10 -6 K I
A 20. L container is filled %ith helium and the pressure is 150 atm and the temperature is 300 How many 5.0 L balloons can be filled when the temperature is 220 C and the atmospheric pressure is 1.05 atm?
Chapter 19 Solutions
Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
Ch. 19.2 - Return to the Chapter-Opening Question, page 496,...Ch. 19.5 - Prob. 1BECh. 19.5 - How much more ice at 10C would be needed in...Ch. 19.6 - What would be the internal energy change in...Ch. 19.7 - Is the work done by the gas in process ADB of Fig....Ch. 19.7 - In Example 1910, if the heat lost from the gas in...Ch. 19.10 - Fanning yourself on a hot day cools you by (a)...Ch. 19 - What happens to the work done on a jar of orange...Ch. 19 - Prob. 2QCh. 19 - Prob. 3Q
Ch. 19 - Prob. 4QCh. 19 - Prob. 5QCh. 19 - Why does water in a canteen stay cooler if the...Ch. 19 - Explain why burns caused by steam at 100C on the...Ch. 19 - Prob. 8QCh. 19 - Will potatoes cook faster if the water is boiling...Ch. 19 - Prob. 10QCh. 19 - Prob. 11QCh. 19 - Use the conservation of energy to explain why the...Ch. 19 - In an isothermal process, 3700 J of work is done...Ch. 19 - Explorers on failed Arctic expeditions have...Ch. 19 - Why is wet sand at the beach cooler to walk on...Ch. 19 - When hot-air furnaces are used to heat a house,...Ch. 19 - Is it possible for the temperature of a system to...Ch. 19 - Discuss how the first law of thermodynamics can...Ch. 19 - Explain in words why CP is greater than CV.Ch. 19 - Prob. 20QCh. 19 - An ideal monatomic gas is allowed to expand slowly...Ch. 19 - Ceiling fans are sometimes reversible, so that...Ch. 19 - Goose down sleeping bags and parkas are often...Ch. 19 - Microprocessor chips nowadays have a heat sink...Ch. 19 - Sea breezes are often encountered on sunny days at...Ch. 19 - The Earth cools off at night much more quickly...Ch. 19 - Explain why air-temperature readings are always...Ch. 19 - A premature baby in an incubator can be...Ch. 19 - Prob. 29QCh. 19 - A 22C day is warm, while a swimming pool at 22C...Ch. 19 - Prob. 32QCh. 19 - Prob. 33QCh. 19 - Prob. 34QCh. 19 - Prob. 35QCh. 19 - An emergency blanket is a thin shiny...Ch. 19 - Explain why cities situated by the ocean tend to...Ch. 19 - (I) To what temperature will 8700 J of heat raise...Ch. 19 - Prob. 2PCh. 19 - Prob. 3PCh. 19 - (II) A British thermal unit (Btu) is a unit of...Ch. 19 - Prob. 5PCh. 19 - Prob. 6PCh. 19 - (I) An automobile cooling system holds 18 L of...Ch. 19 - Prob. 8PCh. 19 - (II) (a) How much energy is required to bring a...Ch. 19 - Prob. 10PCh. 19 - Prob. 11PCh. 19 - (II) A hot iron horseshoe (mass = 0.40kg), just...Ch. 19 - (II) A 31.5-g glass thermometer reads 23.6C before...Ch. 19 - Prob. 14PCh. 19 - (II) When a 290-g piece of iron at 180C is placed...Ch. 19 - (II) The heat capacity. C, of an object is defined...Ch. 19 - (II) The 1.20-kg head of a hammer has a speed of...Ch. 19 - (I) How much heat is needed to melt 26.50kg of...Ch. 19 - (I) During exercise, a person may give off 180...Ch. 19 - (II) A 35g ice cube at its melting point is...Ch. 19 - (II) High-altitude mountain climbers do not eat...Ch. 19 - (II) An iron boiler of mass 180 kg contains 730kg...Ch. 19 - (II) In a hot days race, a bicyclist consumes 8.0...Ch. 19 - (II) The specific heat of mercury is 138 J/kg C....Ch. 19 - Prob. 25PCh. 19 - (II) A 58-kg ice-skater moving at 7.5 m/s glides...Ch. 19 - (I) Sketch a PV diagram of the following process:...Ch. 19 - (I) A gas is enclosed in a cylinder fitted with a...Ch. 19 - (II) The pressure in an ideal gas is cut in half...Ch. 19 - (II) A 1.0-L volume of air initially at 3.5 atm of...Ch. 19 - (II) Consider the following two-step process. Heat...Ch. 19 - (II) The PV diagram in Fig. 1931 shows two...Ch. 19 - (II) Suppose 2.60 mol of an ideal gas of volume V1...Ch. 19 - (II) In an engine, an almost ideal gas is...Ch. 19 - (II) One and one-half moles of an ideal monatomic...Ch. 19 - (II) Determine (a) the work done and (b) the...Ch. 19 - (II) How much work is done by a pump to slowly...Ch. 19 - (II) When a gas is taken from a to c along the...Ch. 19 - (III) In the process of taking a gas from state a...Ch. 19 - (III) Suppose a gas is taken clockwise around the...Ch. 19 - (III) Determine the work done by 1.00 mol of a van...Ch. 19 - (I) What is the internal energy of 4.50 mol of an...Ch. 19 - Prob. 43PCh. 19 - Prob. 44PCh. 19 - Prob. 45PCh. 19 - What gas is it? (II) Show that the work done by n...Ch. 19 - (II) An audience of 1800 fills a concert hall of...Ch. 19 - Prob. 48PCh. 19 - Prob. 49PCh. 19 - (III) A 1.00-mol sample of an ideal diatomic gas...Ch. 19 - (I) A 1.00-mol sample of an ideal diatomic gas,...Ch. 19 - (II) Show, using Eqs. 196 and 1915, that the work...Ch. 19 - (III) A 3.65-mol sample of an ideal diatomic gas...Ch. 19 - (II) An ideal monatomic gas, consisting of 2.8 mol...Ch. 19 - (III) A 1.00-mol sample of an ideal monatomic gas,...Ch. 19 - (III) Consider a parcel of air moving to a...Ch. 19 - Prob. 57PCh. 19 - (I) One end of a 45-cm-long copper rod with a...Ch. 19 - (II) How long does it take the Sun to melt a block...Ch. 19 - (II) Heat conduction to skin. Suppose 150 W of...Ch. 19 - (II) A ceramic teapot ( = 0.70) and a shiny one (...Ch. 19 - (II) A copper rod and an aluminum rod of the same...Ch. 19 - Prob. 63PCh. 19 - Prob. 64PCh. 19 - (III) A house thermostat is normally set to 22C,...Ch. 19 - (III) Approximately how long should it take 9.5 kg...Ch. 19 - (III) A cylindrical pipe has inner radius R1 and...Ch. 19 - (III) Suppose the insulating qualities of the wall...Ch. 19 - Prob. 69GPCh. 19 - (a) Find the total power radiated into space by...Ch. 19 - Prob. 71GPCh. 19 - A mountain climber wears a goose-down jacket 3.5...Ch. 19 - Prob. 73GPCh. 19 - Estimate the rate at which heat can he conducted...Ch. 19 - A marathon runner has an average metabolism rate...Ch. 19 - A house has well-insulated walls 19.5 cm thick...Ch. 19 - In a typical game of squash (Fig. 19-36), two...Ch. 19 - A bicycle pump is a cylinder 22 cm long and 3.0 cm...Ch. 19 - Prob. 79GPCh. 19 - The temperature within the Earths crust increases...Ch. 19 - An ice sheet forms on a lake. The air above the...Ch. 19 - An iron meteorite melts when it enters the Earths...Ch. 19 - A scuba diver releases a 3.60-cm-diameter...Ch. 19 - A reciprocating compressor is a device that...Ch. 19 - The temperature of the glass surface of a 75-W...Ch. 19 - Suppose 3.0 mol of neon (an ideal monatomic gas)...Ch. 19 - At very low temperatures, the molar specific heat...Ch. 19 - A diesel engine accomplishes ignition without a...Ch. 19 - When 6.30 105 J of heat is added to a gas...Ch. 19 - In a cold environment, a person can lose heat by...Ch. 19 - Prob. 91GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Air at 22°C is blown over a hot pipe with a surface area of 3.19 m2 to dissipate 927 W of heat energy. What is the minimum convection heat transfer coefficient that will ensure that the temperature of the pipe surface is less than 45°C [round your final answer to two decimal places]? T. Air, T.arrow_forwardWhat is the role of “loose” electrons in heat conductors? (A) Loose electrons move quickly away from hot locations, making it impossible for energy to move and making the object a good insulator. (B) Loose electrons absorb energy, giving materials a high specific heat capacity. (C) Loose electrons vibrate and emit radiation that carries energy through the material at the speed of light. (D) Loose electrons transfer energy rapidly through a solid.arrow_forwardPlease answer all my questions A house walls that are 21 cm thick and have an average thermal conductivity twice that of glass wool. Assume there are no windows or doors. The walls’ surface area is 1350000 cm2 and their inside surface is at 21°C, while their outside surface is at 6°C. (Thermal conductivity of glass wool is 0.042 W/m°C) (i) Calculate the rate of heat conduction through house walls? Answer for part 1 (ii) How many 100W room heaters would be needed to balance the heat transfer due to conduction? (approximate number) Answer for part 2 b) A spherical infrared heater of radius 5.5 cm has an emissivity of 0.73. What temperature must it run at if the required power is 0.54 kW? Neglect the temperature of the environment. (Stefan's constant = 5.67*10-8 Wm-2K-4) The temperature of the heater in Celsius =arrow_forward
- ⦁ Consider the following physical cases. Choose the letter that correctly matches each roman numeral with the appropriate heat transport mechanism. ⦁ A young boy who jumps into a swimming pool feels cooler than the surroundings.⦁ On a freezing day, a gas station attendant finds the metal handle to a gasoline pump intolerably cold to grip.⦁ A camper gets warm in from of a campfire. ⦁ I. Convection II. Conduction III. Radiation⦁ I. Conduction II. Radiation III. Convection⦁ I. Radiation II. Convection III. Conduction⦁ I. Conduction II. Convection III. Radiation⦁ I. Radiation II. Conduction II. Convectionarrow_forwardHow much power is radiated from each panel? Assume that the panels are in the shade so that the absorbed radiation will be negligible. Assume that the emissivity of the panels is 1.0.arrow_forwardX X 22-23 CFISD Physics B CR-Edg x core.learn.edgenuity.com/player/ ot! Creator B CR Determining the Specific Feat of a substance A 10-gram aluminum cube absorbs 677 joules when its temperature is increased from 50°C to 125°C. What is the specific heat of aluminum? Express the answer to the hundredths place. C Quick Check + Intro Donearrow_forward
- Identify as conduction, convection, or radiation? A. In a swimming pool, the water near the surface is slightly warmer. The warm water rises because of ….. B. A chair is placed several feet from a fire in a fireplace. The fireplace has a glass screen.arrow_forwardA. The planet Venus is different from the earth in several respects: (a) it is only 70 % as far from the sun, so the solar constant is 2800 W/m²; (b) its thick clouds reflect 77% of all incident sunlight and (c) its atmosphere is much more opaque to infrared light. B. (i) Estimate what the average surface temperature of Venus would be if it had no atmosphere and did not reflect any sunlight. (ii) Taking into account the reflectivity of the clouds, estimate the surface temperature. Use the theory of Earth's energy balance to discuss the greenhouse effect.arrow_forwardExample: A building has a south-facing thermal storage wall with night insulation of Rins equal to 1.52 m²-K/W, applied for 8 h. Estimate the monthly heat transfer through the wall into the indoor space with and without night insulation for the month of December. The following data are given: 1. U₂ 2. = 3.7 W/m²-K. W = 0.42 m. 3. k = 2.0 W/m-K. 4. h; 8.3 W/m²-K. = 5. H, = 9.8 MJ/m²-K. 6. (τα) = = 0.73. = = 20°C. 7. TR 8. T₁ = 1°C. 9. A = 21.3 m².arrow_forward
- In an air conditioner, 12.65 MJ of heat transfer occurs from a cold environment in 1.00 h. (a) What mass of ice melting would involve the same heat transfer? (b) How many hours of operation would be equivalent to melting 900 kg ofice? (c) If ice costs 20 cents per kg, do you think the air conditioner could be operated more cheaply than by simply using ice? Describe in detail how you evaluate the relative costs.arrow_forwardYou are in space, compare the rate of heat loss for bare skin vs. a nice thick layer of polychloroprene (space suit material). How thick should your space suit be to be comfortable? specific heat of human body is 3500 J/kg K, specific heat of polychloroprene 2200 J/kg K, temperature in space 2.6 K.arrow_forwardIn a warm room a naked resting person has a skin temperature of 33°C if the room temperature is 29° C, what is the body surface area if the rate of heat loss due to convection is 43watt and the convection constant K =7.1 watt /m?.K Choose the right answer: 1.8m? 1.5m2 O 1.7m2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning