Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 19, Problem 33P
(a)
To determine
The number of moles of an ideal gas.
(b)
To determine
The mass of one cubic meter of air.
(c)
To determine
To explain: The way in which the mass of one cubic meter of air can be compared with the tabulated density of the air at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a) Calculate the volume in ft of one Ib-mole of air (MW = 29 lbm/lb-mole) at a temperature of 492 R at a
pressure of 1 atm (absolute).
b) Repeat the calculation of a) but now considering 1 Ib-mole of CO2 (MW= 44 lbmlb-mole).
c) Calculate the molar volume (V) of this mole of air in ft'/lb-mole.
d) Calculate the density (P) of air in Ibm/ft under these conditions
e) Calculate the density (p) of CO, in Ib.m/ft under these conditions
The gas constant R has the value 287 J/Kg * K for dry air. Using the ideal
gas law (P = PanyRT):
a) Find the density of dry air at 72.05 "F with a pressure of 1095 mb.
b.) Find the density of molst air at the same pressure and temperature if the
relative humidity is 60%.
HINT: (for o) stick with Si units (for b) Find e, given T(see lecture slides). Find e given RH. Find pos from:
P
0.378e
0.378e
Pmoist
1
or
Pmoist = Pary
RT
P
Question 2.
1.60 x 106 Pa. Find
(a) the temperature of the gas and
(b) the average kinetie energy of a gas molecule in the vessel.
(c) If the volume is increased to 9.00 L and the temperature is kept constant, what
is the new pressure (in Pa)?
A 7.00-L vessel contains 3.50 moles of ideal gas at a pressure of
Chapter 19 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 19.1 - Prob. 19.1QQCh. 19.3 - Consider the following pairs of materials. Which...Ch. 19.4 - If you are asked to make a very sensitive glass...Ch. 19.4 - Prob. 19.4QQCh. 19.5 - A common material for cushioning objects in...Ch. 19.5 - On a winter day, you turn on your furnace and the...Ch. 19 - Prob. 1OQCh. 19 - Prob. 2OQCh. 19 - Prob. 3OQCh. 19 - Prob. 4OQ
Ch. 19 - Prob. 5OQCh. 19 - Prob. 6OQCh. 19 - Prob. 7OQCh. 19 - Prob. 8OQCh. 19 - Prob. 9OQCh. 19 - Prob. 10OQCh. 19 - Prob. 11OQCh. 19 - Prob. 12OQCh. 19 - Prob. 13OQCh. 19 - Prob. 14OQCh. 19 - Prob. 1CQCh. 19 - Prob. 2CQCh. 19 - Prob. 3CQCh. 19 - Prob. 4CQCh. 19 - Prob. 5CQCh. 19 - Metal lids on glass jars can often be loosened by...Ch. 19 - Prob. 7CQCh. 19 - Prob. 8CQCh. 19 - Prob. 9CQCh. 19 - Prob. 10CQCh. 19 - Prob. 1PCh. 19 - Prob. 2PCh. 19 - Prob. 3PCh. 19 - Prob. 4PCh. 19 - Liquid nitrogen has a boiling point of 195.81C at...Ch. 19 - Prob. 6PCh. 19 - Prob. 7PCh. 19 - Prob. 8PCh. 19 - Prob. 9PCh. 19 - Prob. 10PCh. 19 - A copper telephone wire has essentially no sag...Ch. 19 - Prob. 12PCh. 19 - The Trans-Alaska pipeline is 1 300 km long,...Ch. 19 - Prob. 14PCh. 19 - Prob. 15PCh. 19 - Prob. 16PCh. 19 - Prob. 17PCh. 19 - Why is the following situation impossible? A thin...Ch. 19 - A volumetric flask made of Pyrex is calibrated at...Ch. 19 - Review. On a day that the temperature is 20.0C, a...Ch. 19 - Prob. 21PCh. 19 - Prob. 22PCh. 19 - Prob. 23PCh. 19 - Prob. 24PCh. 19 - Prob. 25PCh. 19 - Prob. 26PCh. 19 - Prob. 27PCh. 19 - Prob. 28PCh. 19 - Prob. 29PCh. 19 - Prob. 30PCh. 19 - An auditorium has dimensions 10.0 m 20.0 m 30.0...Ch. 19 - Prob. 32PCh. 19 - Prob. 33PCh. 19 - Prob. 34PCh. 19 - Prob. 35PCh. 19 - In state-of-the-art vacuum systems, pressures as...Ch. 19 - Prob. 37PCh. 19 - Prob. 38PCh. 19 - Prob. 39PCh. 19 - Prob. 40PCh. 19 - Prob. 41PCh. 19 - Prob. 42PCh. 19 - Prob. 43PCh. 19 - The pressure gauge on a cylinder of gas registers...Ch. 19 - Prob. 45APCh. 19 - Prob. 46APCh. 19 - Prob. 47APCh. 19 - Prob. 48APCh. 19 - Prob. 49APCh. 19 - Why is the following situation impossible? An...Ch. 19 - Prob. 51APCh. 19 - Prob. 52APCh. 19 - Prob. 53APCh. 19 - Prob. 54APCh. 19 - A student measures the length of a brass rod with...Ch. 19 - Prob. 56APCh. 19 - A liquid has a density . (a) Show that the...Ch. 19 - Prob. 59APCh. 19 - Prob. 60APCh. 19 - The rectangular plate shown in Figure P19.61 has...Ch. 19 - Prob. 62APCh. 19 - Prob. 63APCh. 19 - Prob. 64APCh. 19 - Prob. 65APCh. 19 - Prob. 66APCh. 19 - Prob. 67APCh. 19 - Prob. 68APCh. 19 - Prob. 69APCh. 19 - Prob. 70APCh. 19 - Prob. 71APCh. 19 - Prob. 72CPCh. 19 - Prob. 73CPCh. 19 - Prob. 74CPCh. 19 - Prob. 75CPCh. 19 - Prob. 76CPCh. 19 - Prob. 77CPCh. 19 - Prob. 78CPCh. 19 - A 1.00-km steel railroad rail is fastened securely...
Knowledge Booster
Similar questions
- Assuming the human body is primarily made of water, estimate the number of molecules in it. (Note that water has a molecular mass of 18 g/mol and there are roughly 1024 atoms in a mole)arrow_forwardUsing a numerical integration method such as Simpson's rule, find the fraction of molecules in a sample of oxygen gas at a temperature of 250 K that have speeds between 100 m/s and 150 m/s. The molar mass of oxygen (O2) is 32.0 g/mol. A precision to two significant digits is enough.arrow_forwardOn a hot summer day, the density of air at atmospheric pressure at 35.0C is 1.1455 kg/m3. a. What is the number of moles contained in 1.00 m3 of an ideal gas at this temperature and pressure? b. Avogadros number of air molecules has a mass of 2.85 102 kg. What is the mass of 1.00 m3 of air? c. Does the value calculated in part (b) agree with the stated density of air at this temperature?arrow_forward
- Using the approximation v1v1+v f(v)dvf(v1)v for small v , estimate the fraction of nitrogen molecules at a temperature of 3.00102 K that have speeds between 290 m/s and 291 m/s.arrow_forwardWrite the ideal gas law in terms of the mass density 17.1 (measured in kg/m³) of the gas. At 0 °C and 1 atm, find the density of the following: (a) nitrogen; (b) oxygen; (c) hydrogenarrow_forwardThe pressure of 1 mole of an ideal gas is increasing at a rate of 0.06 kPa/s and the temperature is increasing at a rate of 0.19 K/s. Use the equation PV = 8.31T to find the rate of change of the volume (in L/s) when the pressure is 26 kPa and the temperature is 255 K. (Round your answer to two decimal places.) L/sarrow_forward
- On a hot summer day, the density of air at atmospheric pressure at 35 °C is 1.1455 kg/m3. What is the number of moles contained in 1 m3 of ideal gas at this temperature and pressure? Avogadro’s number of air molecules has a mass of 2.85×10-2kg. what is the mass of 1 m3 of air? Does the value calculated in part (B) agree with the stated density of air at this temperature?arrow_forwardThe pressure P (in kilopascals), volume V (in liters), and temperature T (in kelvins) of a mole of an ideal gas are related by the equation PV = 8.317. Find the rate at which the volume is changing when the temperature is 325 K and increasing at a rate of 0.05 K/s and the pressure is 29 and increasing at a rate of 0.07 kPa/s. Please show your answers to at least 4 decimal places. dV dt L/sarrow_forwardHow many molecules are in a typical object, such as gas in a tire or water in a drink? We can use the ideal gas law to give us an idea of how large N typically is.Calculate the number of molecules in a cubic meter of gas at standard temperature and pressure (STP), which is defined to be 0ºC and atmospheric pressure.arrow_forward
- Large helium-filled balloons are used to lift scientific equipment to high altitudes. (a) What is the pressure inside such a balloon if it starts out at sea level with a temperature of 22.8°C and rises to an altitude where its volume is sixteen times the original volume and its temperature is – 33.7 ºC ? Enter your answer to at least 3 decimal places (b) What is the gauge pressure? (Assume atmospheric pressure is constant.) atmarrow_forwardOne mole of an ideal gas at standard temperature and pressure occupies 22.4 L (molar volume). What is the ratio of molar volume to the atomic volume of a mole of hydrogen ? (Take the size of hydrogen molecule to be about 1 Å). Why is this ratio so large ?arrow_forwardWhich of the statements are true?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning