Calculate

Interpretation:
The standard cell potential, emf of the galvanic cell, and free energy change for the given cell reactions at
are to be determined.
Concept introduction:
Gibbs free energy is the change in the enthalpy
According to the standard reduction potential values, the electrode that has lower negative reduction potential will act as a cathode and will undergo reduction. However, if the negative reduction potential of the electrode is high, it will act as an anode and will undergo oxidation.
The standard reduction potential of a galvanic cell may be calculated in terms of standard reduction potential of cathode and anode, as the relation mentioned below:
According to the Nernst equation, the relation between emf, standard cell potential, and reaction quotient at
will be as follows:
Here,
The relation between cell potential and free energy change is as follows:
Here,
is the Gibb’s free energy change,
is the Faraday constant
Answer to Problem 30QP
Solution:
(a)
(b)
Explanation of Solution
a)
The overall reaction of galvanic cell is as follows:
The half-cell reactions of
Oxidation half reaction (Anode):
Reduction half reaction (Cathode):
As the standard reduction potential of
half-cell reaction is less (more negative); therefore, it will act as an anode and will undergo oxidation.
Therefore,
The cell representation of a galvanic cell is as follows:
The standard cell potential that is
(at
) for the above galvanic cell is calculated as follows:
The reaction quotient for the reaction is given by the following expression:
Concentration of
and
is
and
Substitute all the values in the above equation,
In the given galvanic cell, the total loss and total gain of electrons is two.
Now, according to the Nernst equation, the relation between emf, standard cell potential, and reaction quotient at
will be as follows:
Substitute all the values in the above equation,
The relation between cell potential and free energy change is as follows:
Substitute all the values in the above equation,
b)
The overall reaction of galvanic cell is as follows:
The half-cell reactions of
Oxidation half reaction (Anode):
Reduction half reaction (Cathode):
As the standard reduction potential of
half-cell reaction is greater (less negative), it will act as a cathode and will undergo reduction. However, the standard reduction potential of
half-cell reaction is less (more negative); therefore, it will act as an anode and will undergo oxidation.
Therefore,
The cell representation of a galvanic cell is as follows:
The standard cell potential that is
(at
) for the above galvanic cell is calculated as follows:
The reaction quotient for the reaction is as follows:
Concentration of
and
is
and
Substitute all the values in the above expression,
In the given galvanic cell, the total loss of electron and total gain of electron is six.
Now, according to the Nernst equation, the relation between emf, standard cell potential, and reaction quotient at
will be as follows:
On substituting all the values in the above equation,
The relation between cell potential and free energy change is as follows:
Substitute the values of
Want to see more full solutions like this?
Chapter 19 Solutions
BURDGE CHEMISTRY VALUE ED (LL)
- ||| 7:47 ull 57% ← Problem 19 of 48 Submit Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the product of this carbocation rearrangement. Include all lone pairs and charges as appropriate. H 1,2-alkyl shift +arrow_forwardWould the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forwardBelow is the SN1 reaction of (S)-3-chlorocyclohexene and hydroxide (OH). Draw the missing curved arrows, lone pairs of electrons, and nonzero formal charges. In the third box, draw the two enantiomeric products that will be produced. 5th attempt Please draw all four bonds at chiral centers. Draw the two enantiomeric products that will be produced. Draw in any hydrogen at chiral centers. 1000 4th attempt Feedback Please draw all four bonds at chiral centers. 8. R5 HO: See Periodic Table See Hint H Cl Br Jid See Periodic Table See Hintarrow_forward
- Show that a molecule with configuration π4 has a cylindrically symmetric electron distribution. Hint: Let the π orbitals be equal to xf and yf, where f is a function that depends only on the distance from the internuclear axis.arrow_forward(a) Verify that the lattice energies of the alkali metal iodides are inversely proportional to the distances between the ions in MI (M = alkali metal) by plotting the lattice energies given below against the internuclear distances dMI. Is the correlation good? Would a better fit be obtained by plotting the lattice energies as a function of (1 — d*/d)/d, as theoretically suggested, with d* = 34.5 pm? You must use a standard graphing program to plot the graph. It generates an equation for the line and calculates a correlation coefficient. (b) From the graph obtained in (a), estimate the lattice energy of silver iodide. (c) Compare the results of (b) with the experimental value of 886 kJ/mol. If they do not agree, explain the deviation.arrow_forwardCan I please get help with #3 & 4? Thanks you so much!arrow_forward
- A solution consisting of 0.200 mol methylbenzene, C,H,CH,, in 500. g of nitrobenzene, CH,NO₂, freezes at 3.2°C. Pure nitrobenzene freezes at 6.0°C. The molal freezing point constant of nitrobenzene is _ °C/m. a) 2.8 b) 3.2 c) 5.6 d) 7.0 e) 14.0arrow_forwardBelow is the SN1 reaction of (S)-3-chlorocyclohexene and hydroxide ("OH). Draw the missing curved arrows, lone pairs of electrons, and nonzero formal charges. In the third box, draw the two enantiomeric products that will be produced. 2nd attempt Please draw all four bonds at chiral centers. 0 D Draw the missing curved arrow notation. Add lone pairs of electrons and nonzero formal charges. + 노 V 1st attempt Feedback Please draw all four bonds at chiral centers. See Periodic Table See Hint F P 41 H Br See Periodic Table See Hint H Larrow_forwardHow close are the Mulliken and Pauling electronegativity scales? (a) Now that the ionization energies and electron affinities have been defined, calculate the Mulliken and Pauling electronegativities for C, N, O and F. Compare them. (Make the necessary adjustments to the values, such as dividing the ionization energies and electron affinities by 230kj/mol) (b) Plot both sets of electronegativities against atomic number (use the same graph). (c) Which scale depends most consistently on position in the Periodic Table?arrow_forward
- Below is the SN2 reaction between 2-bromopropane and iodide (I). Draw the mechanism arrows in the first box to reflect electron movements. In both boxes, add lone pairs of electrons and nonzero formal charges. 4th attempt Feedback 3rd attempt Feedback 1 -Br H :Bri :Br: ili See Periodic Table See Hint ini See Periodic Table See Hintarrow_forwardWhen 4-chloro-1-butanol is placed in sodium hydride, a cyclization reaction occurs. 3rd attempt 2 HO NaH CI D Draw the curved arrow notation to form the intermediate. 4 2 H₂ See Periodic Table See Hint =arrow_forwardSketch, qualitatively, the potential energy curves of the N-N bond of N2H4, N2 and N3- graph. Explain why the energy at the minimum of each curve is not the same.arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning




