Principles of Biology
2nd Edition
ISBN: 9781259875120
Author: Robert Brooker, Eric P. Widmaier Dr., Linda Graham Dr. Ph.D., Peter Stiling Dr. Ph.D.
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 2CCQ
Summary Introduction
To determine:
The percentage of individuals that would be expected to be heterozygous carriers, on the basis of Hardy- Weinberg equilibrium.
Introduction:
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If 120 of 200 alleles are dominant alleles, then what percentage of the alleles are dominant alleles?
A-12%
B-40%
C-60%
D-120%
What percentage of the alleles are recessive alleles?
E-8%
F-40%
G-60%
H-80%
Which of the terms of the Hardy-Weinberg equations represents the frequency of the recessive allele in the gene pool?
A-p^2
B-p
C-2pq
D-q^2
In a human population at equilibrium, three genotypes are present in the following proportions:
A/A = 0.81, A/a = 0.18, a/a = 0.01.
Answer the following questions:
What are the frequencies of gene A and gene a?
What will their frequencies be in the next generation?
What proportion of all marriages in this population is between heterozygotic parents?
Tay–Sachs disease is an autosomal recessive disorder. Among Ashkenazi Jews, the frequency of Tay–Sachs disease is 1 in 3600. Assuming the Ashkenazi population is in Hardy-Weinberg equilibrium, what proportion of the population is expected to be carriers (e.g. heterozygous) for the Tay–Sachs allele?
Chapter 19 Solutions
Principles of Biology
Ch. 19.1 - Prob. 1TYKCh. 19.1 - Prob. 2TYKCh. 19.1 - The phrase an organism evolves is incorrect....Ch. 19.1 - Prob. 1BCCh. 19.2 - Explain how geography played a key role in the...Ch. 19.2 - Prob. 2CCCh. 19.2 - Prob. 3CCCh. 19.2 - Prob. 1TYKCh. 19.2 - Homologous traits show similarities because the...Ch. 19.3 - What is the frequency of pink flowers in a...
Ch. 19.3 - Prob. 1TYKCh. 19.3 - Prob. 2TYKCh. 19.4 - Lets suppose the climate on an island abruptly...Ch. 19.4 - Prob. 2CCCh. 19.4 - Prob. 3CCCh. 19.4 - Prob. 4CCCh. 19.4 - Prob. 1TYKCh. 19.4 - Prob. 2TYKCh. 19.4 - Prob. 3TYKCh. 19.5 - How does the bottleneck effect undermine the...Ch. 19.5 - Prob. 1TYKCh. 19.5 - Prob. 2TYKCh. 19.5 - Prob. 1BCCh. 19.6 - How does migration affect the genetic compositions...Ch. 19.6 - Prob. 1BCCh. 19.6 - Prob. 1TYKCh. 19.6 - Populations that experience inbreeding may also...Ch. 19 - Prob. 1TYCh. 19 - An evolutionary change in which a population of...Ch. 19 - Homology occurs because different species occupy...Ch. 19 - Prob. 4TYCh. 19 - Prob. 5TYCh. 19 - Prob. 6TYCh. 19 - Prob. 7TYCh. 19 - Prob. 8TYCh. 19 - Prob. 9TYCh. 19 - The micro-evolutionary factor most sensitive to...Ch. 19 - Prob. 1CCQCh. 19 - Prob. 2CCQCh. 19 - A principle of biology is that populations of...Ch. 19 - Prob. 1CBQCh. 19 - Prob. 2CBQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- In a population that meets the Hardy–Weinberg equilibrium assumptions, 81% of the individuals are homozygous for a recessive allele. What percentage of the individuals would be expected to be heterozygous for this locus in the next generation?arrow_forwardThis lab exercise requires that we count certain Mendelian traits among students present in the lab. Your professor will explain each trait being addressed and will then ask students to identify if they are dominant or recessive for that specific trait. The collected traits will then be plugged into the Hardy-Weinberg Equilibrium formula in order to calculate frequency of Homozygous dominant, Heterozygous and Homozygous recessive individuals in the same. p2 + 2pq + q2 = 100 given data: trait: hair swirl 19 individuals total. 10 had the homozygous dominant hair swirl trait: clockwise the nine other were recessive please do a step by step explanation with the calculation using this data, as I am very unfamiliar with what values mean what and the equation itself thank you!arrow_forwardAssume that the frequency of gene B in a hypothetical population Is 0.63, that there are only two alleles (B and b) of the gee in the population, that allele B is dominant over allele b, that neither allele has a selective advantage over the other, and that the population is at equilibrium with regard to this particular gene. And how many individuals in this population are expected to be of genotype BB according to the Hardy-Weinberg formula? (Assume that the total population size is 150) 71 52 118 60 131arrow_forward
- Nieman-Pick Syndrome involves a defective enzyme, sphyngomylinase. It is usually fatal before the age of 3. The defective allele frequency is 0.01 in Ashkenazi populations. Let’s call the healthy allele A, and the lethal allele a. a) What is the frequency of allele A? Assuming Hardy-Weinberg equilibrium, how many people do you expect to have the three genotypes in a population of 10,000? b) AA:_______ c) Aa:________ d) aa:_________arrow_forwardA sample of 100 individuals from a population that is dimorphic at the A locus has genotype counts as follows. AA: 30 Aa: 60 aa: 10 a) What are the allele frequencies in the population? b) What are the expected genotype frequencies, if the population were at HardyWeinberg equilibrium? c) Is the proportion of heterozygotes lower or higher than expected at Hardy-Weinberg equilibrium? What deviations from the assumptions of the model would best explain the observed difference?arrow_forwardIf a population is in Hardy-Weinberg equilibrium for the multiple alleles A+, A and a, whose frequencies are p= 0.60 for A+, q= 0.20 for A, and r = 0.20 for a, what percentage of the population is expected to be heterozygous?arrow_forward
- 8% of XY individuals are color blind in a population. Assume Hardy-Weinberg conditions. Submit your answer as it is. a) What is the percentage of color-blind XX individuals? b) What is the percentage of XX individuals who are carriers? c) If this population has 1000 individuals with 50% of male and 50% of female, how many carriers are present in this population? Submit your answer as it is. Do not round up.arrow_forwardPolydactyly (being born with more than 5 fingers or toes) is caused by a dominant allele of a single gene. If the frequency of the recessive allele is 0.9 (or 90%) in a certain population, what percentage of the population would you expect to be heterozygotes? Assume this population is in Hardy-Weinberg equilibrium. Note: In reality, there are other causes of polydactyly when it is accompanied by other disorders, so this problem is an over-simplification. 18% 1% 90% 81%arrow_forwardThe ability to taste the compound PTC is controlled by a dominant allele T, while individuals homozygous for the recessive allele (t) cannot taste PTC. In a population consisting of 500 individuals, 347 are tasters and 153 are non-PTC tasters. Calculate the frequency of the T and t alleles in this population, and frequency of the genotypes. (Please train yourself to use the Hardy-Weinberg equation.) To present your answers, follow the format in the picture below.arrow_forward
- For a gene existing in two alleles, what are the allele frequencies when the heterozygote frequency is at its maximum value, assuming Hardy-Weinberg equilibrium? What if there are three alleles?arrow_forwardIn a certain population of frogs, 120 are green, 60 are brownish green, and 20 are brown. The allele for brown is denoted GB, and the allele for green is designated GG. These two alleles are incompletely dominant to each other. If this population were in Hardy-Weinberg equilibrium, how many green frogs would you expect to observe? (Remember to multiply the expected frequency by the number of frogs in the population.)arrow_forwardConsider the case of a hypothetical genetic disease called WhySciEleven (WSE), an inherited disease that results to the inability to complete production of an amino acid “moduleactivity” that results in brain damage if untreated. WSE is due to a recessive allele. Given one WSE occurrence per 10,000 births. Which term in the Hardy-Weinberg equation corresponds to the frequency of individuals who have no alleles for the disease WSE? a. p b. 2pq c. p2 d. q2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage Learning
Human Heredity: Principles and Issues (MindTap Co...
Biology
ISBN:9781305251052
Author:Michael Cummings
Publisher:Cengage Learning
Mendelian Genetics and Punnett Squares; Author: Professor Dave Explains;https://www.youtube.com/watch?v=3f_eisNPpnc;License: Standard YouTube License, CC-BY
The Evolution of Populations: Natural Selection, Genetic Drift, and Gene Flow; Author: Professor Dave Explains;https://www.youtube.com/watch?v=SRWXEMlI0_U;License: Standard YouTube License, CC-BY