The elements which are easier to oxidize compared to H 2 (g) have to be identified. a)Cu d)Ag b)Zn e)Cr c)Fe Concept introduction: Under certain conditions a cell potential is measured it is called as standard potential (E cell o ) . Standard potential (E cell o ) can be calculated by the following formula. E cell o =E cathode o -E anode o The E cell o value is positive, the reaction is predicted to be product favoured at equilibrium. The E cell o value is negative, the reaction is predicted to be reactant favoured at equilibrium. Electrochemical series: It is a decreasing order of the reduction potentials. The most positive E 0 are placed in the top in the electrochemical series, it has greater tendency for reduction and lower tendency of oxidation. And the most negative E 0 values of elements are placed in the bottom of the series.
The elements which are easier to oxidize compared to H 2 (g) have to be identified. a)Cu d)Ag b)Zn e)Cr c)Fe Concept introduction: Under certain conditions a cell potential is measured it is called as standard potential (E cell o ) . Standard potential (E cell o ) can be calculated by the following formula. E cell o =E cathode o -E anode o The E cell o value is positive, the reaction is predicted to be product favoured at equilibrium. The E cell o value is negative, the reaction is predicted to be reactant favoured at equilibrium. Electrochemical series: It is a decreasing order of the reduction potentials. The most positive E 0 are placed in the top in the electrochemical series, it has greater tendency for reduction and lower tendency of oxidation. And the most negative E 0 values of elements are placed in the bottom of the series.
Solution Summary: The author explains the electrochemical series, which is a decreasing order of the reduction potentials.
The elements which are easier to oxidize compared to H2(g) have to be identified.
a)Cu d)Agb)Zn e)Crc)Fe
Concept introduction:
Under certain conditions a cell potential is measured it is called as standard potential (Ecello).
Standard potential (Ecello) can be calculated by the following formula.
Ecello=Ecathodeo-Eanodeo
The Ecello value is positive, the reaction is predicted to be product favoured at equilibrium.
The Ecello value is negative, the reaction is predicted to be reactant favoured at equilibrium.
Electrochemical series:
It is a decreasing order of the reduction potentials. The most positive E0 are placed in the top in the electrochemical series, it has greater tendency for reduction and lower tendency of oxidation. And the most negative E0 values of elements are placed in the bottom of the series.
Part VII. The H-NMR of a compound with molecular formula C5 H 10 O2 is given below.
Find the following:
(a) The no. of protons corresponding to each signal in the spectra
(6) Give the structure of the compound and assign the signals to each
proton in the compound.
a
70.2
Integration Values
C5H10O2
b
47.7
C
46.5
d
69.5
3.6 3.5
3.4 3.3 3.2 3.1 3.0
2.9 2.8
2.7
2.6 2.5
2.4 2.3 2.2 2.1 2.0
Chemical Shift (ppm)
1.9
1.8
1.7 1.6
1.5
1.4 1.3 1.2
1.1 1.0
0.9 0.8
Part 111. 1 H-NMR spectrum of a compound with integration values in red is given below.
Answer the following:
(a) write the signals in the 'H-NMR spectrum to the corresponding protons on the structure
of the molecule below.
(b) Identify the theoretical multiplicities for each proton in the compound. Also give the possible.
complex splitting patterns assuming J values are not similar.
там
Br
22
2
3
6
4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0
Chemical Shift (ppm)
ra.
Br
2
3
6
6
2.5
2.4
2.3
2.2
2.1
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
Chemical Shift (ppm)
2
2
Br
7.3
7.2
7.1
7.0 6.9
6.7 6.6 6.5
6.4
6.3
6.2
6.1
6.0
Chemical Shift (ppm)
5.9
5.8 5.7
5.5 5.4 5.3 5.2
5.0 4.9
1600°
1538°C
1493°C
In the diagram, the letter L indicates
that it is a liquid. Indicate its
components in the upper region
where only L is indicated.
The
iron-iron carbide phase
diagram.
Temperature (°C)
1400
8
1394°C
y+L
1200
2.14
y, Austenite
10000
912°C
800a
0.76
0.022
600
400
(Fe)
a, Ferrite
Composition (at% C)
15
1147°C
a + Fe3C
2
3
Composition (wt% C)
L
2500
4.30
2000
y + Fe3C
727°C
1500
Cementite (Fe3C)
1000
4
5
6
6.70
Temperature (°F)
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell