The free energy change for a reaction, Δ r G °, is the maximum energy that can be extracted from the process as work, whereas Δ r H ° is the total chemical potential energy change. The efficiency of a fuel cell is the ratio of these two quantities. Efficiency = Δ r G ° Δ r H ° × 100 % Consider the hydrogen-oxygen fuel cell, where the net reaction is H 2 ( g ) + 1 2 O 2 ( g ) → H 2 O ( l ) (a) Calculate the efficiency of the fuel cell under standard conditions. (b) Calculate the efficiency of the fuel cell if the product is water vapor instead of liquid water. (c) Does the efficiency depend on the state of the reaction product? Why or why not?
The free energy change for a reaction, Δ r G °, is the maximum energy that can be extracted from the process as work, whereas Δ r H ° is the total chemical potential energy change. The efficiency of a fuel cell is the ratio of these two quantities. Efficiency = Δ r G ° Δ r H ° × 100 % Consider the hydrogen-oxygen fuel cell, where the net reaction is H 2 ( g ) + 1 2 O 2 ( g ) → H 2 O ( l ) (a) Calculate the efficiency of the fuel cell under standard conditions. (b) Calculate the efficiency of the fuel cell if the product is water vapor instead of liquid water. (c) Does the efficiency depend on the state of the reaction product? Why or why not?
Solution Summary: The author explains that the efficiency of a fuel cell under standard conditions has to be determined.
The free energy change for a reaction, ΔrG°, is the maximum energy that can be extracted from the process as work, whereas ΔrH° is the total chemical potential energy change. The efficiency of a fuel cell is the ratio of these two quantities.
Efficiency =
Δ
r
G
°
Δ
r
H
°
×
100
%
Consider the hydrogen-oxygen fuel cell, where the net reaction is
H
2
(
g
)
+
1
2
O
2
(
g
)
→
H
2
O
(
l
)
(a) Calculate the efficiency of the fuel cell under standard conditions.
(b) Calculate the efficiency of the fuel cell if the product is water vapor instead of liquid water.
(c) Does the efficiency depend on the state of the reaction product? Why or why not?
Please help me calculate the undiluted samples ppm concentration.
My calculations were 280.11 ppm. Please see if I did my math correctly using the following standard curve.
Link: https://mnscu-my.sharepoint.com/:x:/g/personal/vi2163ss_go_minnstate_edu/EVSJL_W0qrxMkUjK2J3xMUEBHDu0UM1vPKQ-bc9HTcYXDQ?e=hVuPC4
Provide an IUPAC name for each of the compounds shown.
(Specify (E)/(Z) stereochemistry, if relevant, for straight chain alkenes only. Pay attention to
commas, dashes, etc.)
H₁₂C
C(CH3)3
C=C
H3C
CH3
CH3CH2CH
CI
CH3
Submit Answer
Retry Entire Group
2 more group attempts remaining
Previous
Next
Arrange the following compounds / ions in increasing nucleophilicity (least to
most nucleophilic)
CH3NH2
CH3C=C:
CH3COO
1
2
3
5
Multiple Choice 1 point
1, 2, 3
2, 1, 3
3, 1, 2
2, 3, 1
The other answers are not correct
0000
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell