21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
6th Edition
ISBN: 9780393874921
Author: PALEN
Publisher: Norton, W. W. & Company, Inc.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 23QP
To determine
To explain which is most luminous a quasar or a galaxy with 100billion solar type stars.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The figure below shows the spectra of two galaxies A and B.
How astronomers determine the distance of a galaxy? Explain.
If the active core of a galaxy contains a black hole of 106?Θ (1 million solar masses), what will the orbital velocity be for matter orbiting the black hole at a distance of 0.33 AU? (Hint: use the formula for orbital velocity: ?=√???; where ?=6.67×10−11 ?3?? ?2 and ?Θ= 2.0×1030 ??. Note: 1 ??=1.50×1011 ?)
Chapter 19 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
Ch. 19.1 - Prob. 19.1ACYUCh. 19.1 - Prob. 19.1BCYUCh. 19.2 - Prob. 19.2CYUCh. 19.3 - Prob. 19.3CYUCh. 19.4 - Prob. 19.4CYUCh. 19 - Prob. 1QPCh. 19 - Prob. 2QPCh. 19 - Prob. 3QPCh. 19 - Prob. 4QPCh. 19 - Prob. 5QP
Ch. 19 - Prob. 6QPCh. 19 - Prob. 7QPCh. 19 - Prob. 8QPCh. 19 - Prob. 9QPCh. 19 - Prob. 10QPCh. 19 - Prob. 11QPCh. 19 - Prob. 12QPCh. 19 - Prob. 13QPCh. 19 - Prob. 14QPCh. 19 - Prob. 15QPCh. 19 - Prob. 16QPCh. 19 - Prob. 17QPCh. 19 - Prob. 18QPCh. 19 - Prob. 19QPCh. 19 - Prob. 20QPCh. 19 - Prob. 21QPCh. 19 - Prob. 22QPCh. 19 - Prob. 23QPCh. 19 - Prob. 24QPCh. 19 - Prob. 25QPCh. 19 - Prob. 26QPCh. 19 - Prob. 27QPCh. 19 - Prob. 28QPCh. 19 - Prob. 29QPCh. 19 - Prob. 30QPCh. 19 - Prob. 31QPCh. 19 - Prob. 32QPCh. 19 - Prob. 33QPCh. 19 - Prob. 34QPCh. 19 - Prob. 35QPCh. 19 - Prob. 36QPCh. 19 - Prob. 37QPCh. 19 - Prob. 38QPCh. 19 - Prob. 39QPCh. 19 - Prob. 40QPCh. 19 - Prob. 41QPCh. 19 - Prob. 42QPCh. 19 - Prob. 43QPCh. 19 - Prob. 44QPCh. 19 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the active core of a galaxy contains a black hole of 106 M, what will the orbital period be for matter orbiting the black hole at a distance of 0.23 AU? Hint: Use the formula for circular velocity, V. GM V hrarrow_forwardThe figure below shows the spectra of two galaxies A and B. Please can i get help with this questions below: 1. Which of these galaxies has ongoing star formation? How can you tell?2. One of these galaxies has Hubble type E3 while the other is SBb. Which is which? What does the 3 inE3 tell you about the galaxy? What does the SB in SBb tell you about the galaxy?3. What effects would dust have on the two spectra?4. Which galaxy would you expect to have more far-infrared emission? Explarrow_forwardA galaxy's rotation curve is a measure of the orbital speed of stars as a function of distance from the galaxy's centre. The fact that rotation curves are primarily flat at large galactocen- tric distances (vrot(r) ~ constant) is the most common example of why astronomer's believe dark matter exists. Let's work out why! Assuming that each star in a given galaxy has a circular orbit, we know that the accelera- tion due to gravity felt by each star is due to the mass enclosed within its orbital radius r and equal to v?/r. Here, ve is the circular orbit velocity of the star. (a) Show that the expected relationship between ve and r due to the stellar halo (p(r) xr-3.5) does not produce a flat rotation curve. (b) Show that a p(r) ∞ r¯² density profile successfully produces a flat ro- tation curve and must therefore be the general profile that dark matter follows in our galaxy.arrow_forward
- The Tully-Fischer method relies on being able to relate the mass of a galaxy to its rotation velocity. Stars in the outer-most regions of the Milky Way galaxy, located at a distance of 50 kpc from the galactic centre, are observed to orbit at a speed vrot determine the mass in the Milky Way that lies interior to 50 kpc. Express your answer in units of the Solar mass. 250 km s-1. Using Kepler's 3rd Law,arrow_forwardImagine that you have achieved immortality and you used it to travel outside of the Milky Way (you will be leaving today and you will be traveling with the speed of 1/10th of the speed of light). Describe how the Milky Way would look from the outside if you could watch it for the next 100 billion years.arrow_forward= 2. Using a Hubble constant of Ho 70 km/s/Mpc, find the distance to the galaxy cluster that moves with a velocity of 6500 km/s. Give your answer in megaparsecs and light-years.arrow_forward
- Suppose you want to observe the molecular gas in a galaxy with redshift z using the rotational transition of CO J=4-3. What frequency would you observe this transition at? (Hint: the CO J=1-0 emits a photon at 115.27 GHz, and higher order transitions emit photons with frequencies in multiples of J. Express your answer as an integer. Values: z = 3.7arrow_forwardIndicate whether the following statements are true or false. (Select T-True, F-False. If the first is T and the rest F, enter TFFFFF). A) If we find an O type star in our galaxy, it must be in the disk. B) The nearest large spiral Galaxy, similar in size to the Milky Way, is the Andromeda Galaxy (M31). It is located about 2 million light years from Earth. C) The disk of the Milky Way galaxy is about 100,000 light years in diameter. D) On very large scales, matter in the Universe is distributed in clumps and voids. E) Distances to most stars in the Milky Way are measured by parallax. F) RR Lyrae and Cepheid variable stars are used to measure the distance to nearby galaxies.arrow_forwardIf you want to find a sizeable collection of Population Il stars in the Milky Way Galaxy, where would be a good place to look? A. near the Sun B. in a globular cluster high above the Galaxy's disk C. in the Orion Spur D.on the outer surface of giant molecular clouds E. in an open cluster, especially one with a lot of dust in and around itarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning