21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
6th Edition
ISBN: 9780393874921
Author: PALEN
Publisher: Norton, W. W. & Company, Inc.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 31QP
(a)
To determine
The approximate measurement error in rotation velocity.
(b)
To determine
The percentage error of the measured velocity.
(c)
To determine
To explain whether shifting the black line would change the overall conclusion about redshift and distance.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Using MBH
=
6.6 × 10 Mo, calculate the below.
a. Find radius of the Schwarzschild sphere (Schwarzschild radius Rs). You
can calculated from the appropriate formula or just use the fact that for
an object of 1 solar mass Rs = 3 km.
b. Express Rs in km, in AU, in parsecs.
c. Using the distance to M87 and your result above, find angular radius of
the SMBH (Schwarzschild radius). Express it in arcseconds (") and micro-
arcseconds (pas)
d. Take the radius of Pluto's orbit equal to 40 AU and find its angular size
(in micro-arcseconds, pas) at the distance of M87.
Barnard’s star is an orange star in the constellation Ophiuchus. It has the largest known proper motion (10.3577"/yr) and the fourth-largest parallax angle (0.54901"). In the spectrum of this star, the H alpha line is observed to have a wavelength of 656.034 nm when measured from the ground.
a. Determine the radial velocity of Barnard’s star.
b. Determine the transverse velocity of Barnard’s star.
c. Calculate the speed of Barnard’s star through space.
Problem 1. The Sun as seen from Earth has an apparent magnitude of -26 in the B-band.
1. What is the Sun's absolute magnitude (in the B-band)?
2. What would its apparent magnitude be as seen from Jupiter? (Jupiter is approximately 5.2 AU from the
Sun.)
3. At a certain distance d from a Star A, its apparent brightness is f. If we were to travel at a relativistic
velocity to a point in space which is 5 times further away, how much fainter would the star appear to us?
(i.e. what fraction of its original apparent brightness would it now appear to us?)
Chapter 19 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
Ch. 19.1 - Prob. 19.1ACYUCh. 19.1 - Prob. 19.1BCYUCh. 19.2 - Prob. 19.2CYUCh. 19.3 - Prob. 19.3CYUCh. 19.4 - Prob. 19.4CYUCh. 19 - Prob. 1QPCh. 19 - Prob. 2QPCh. 19 - Prob. 3QPCh. 19 - Prob. 4QPCh. 19 - Prob. 5QP
Ch. 19 - Prob. 6QPCh. 19 - Prob. 7QPCh. 19 - Prob. 8QPCh. 19 - Prob. 9QPCh. 19 - Prob. 10QPCh. 19 - Prob. 11QPCh. 19 - Prob. 12QPCh. 19 - Prob. 13QPCh. 19 - Prob. 14QPCh. 19 - Prob. 15QPCh. 19 - Prob. 16QPCh. 19 - Prob. 17QPCh. 19 - Prob. 18QPCh. 19 - Prob. 19QPCh. 19 - Prob. 20QPCh. 19 - Prob. 21QPCh. 19 - Prob. 22QPCh. 19 - Prob. 23QPCh. 19 - Prob. 24QPCh. 19 - Prob. 25QPCh. 19 - Prob. 26QPCh. 19 - Prob. 27QPCh. 19 - Prob. 28QPCh. 19 - Prob. 29QPCh. 19 - Prob. 30QPCh. 19 - Prob. 31QPCh. 19 - Prob. 32QPCh. 19 - Prob. 33QPCh. 19 - Prob. 34QPCh. 19 - Prob. 35QPCh. 19 - Prob. 36QPCh. 19 - Prob. 37QPCh. 19 - Prob. 38QPCh. 19 - Prob. 39QPCh. 19 - Prob. 40QPCh. 19 - Prob. 41QPCh. 19 - Prob. 42QPCh. 19 - Prob. 43QPCh. 19 - Prob. 44QPCh. 19 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A main sequence star of mass, M, and radius, R, collapses to a white dwarf star with a radius 1.0% as big as the original star. If ω is the angular velocity of the original star, what is the angular velocity of the white dwarf star? Approximate the star to be a uniform solid sphere. a. 20,000ω b. 10,000ω c. 50,000ω d. 1,000ω e. 5,000ωarrow_forwardJ6arrow_forwardIn order to form a black hole, a star must be about how much more massive than our Sun? a. Fifty times as massive b. Ten times as massive c. Twice as massive d. Twenty times as massive e. It actually must be less massive than our Sunarrow_forward
- Star A and Star B are a bound binary at a distance of 20 pc from the Earth. Their separation is 30 AU. Star A has a mass twice that of Star B. The orbital period of the binary is 100 years. Assume the stars orbit in circular orbits. a. What is the parallax of Star A, in units of arcsec? Assume parallax is measured from the Earth. For part a, ignore the presence of the binary companion. b. What is the angular separation we would observe between Star A and Star B, in units of arcsec? If we compare multiple images of this star system taken across different months and years, which source of motion will be the dominant effect? What is the total mass of the binary system (combined mass of Star A and Star B)? Provide your answer in both kg and solar masses. c. d. What is the distance from Star A to the center of mass of the binary system?arrow_forwardA (relatively) nearby K-type star known as Nu? Canis Majoris has an estimated orbital radius of 2.3344 x 10° km, and an estimated orbital period of 736.9 days. a. What is the mass of Nu? Canis Majoris? b. What is the mass of Nu² Canis Majoris in terms of solar masses?arrow_forwardhding Light Years 26.1 How far is it from Los Angeles to New York? Pretty far, but it can still be measured in miles or kilometers. How far is it from Earth to the Sun? It's about one hundred forty-nine million, six hundred thousand kilometers (149,600,000, or 1.496 x 10 km). Because this number is so large, and many other distances in space are even larger, scientists developed bigger units in order to measure them. An Astronomical Unit (AU) is 4:496x 108 km (the distance from Earth to the sun). This unit is usually used to measure distances within our solar system. To measure longer distances (like the distance between Earth and stars and other galaxies), the light year (ly) is used. A light year is the distance that light travels through space in one year, or 9.468 x 1012 km. 28.1 n the in tem. EXAMPLES 1. Converting light years (ly) to kilometers (km) Earth's closest star (Proxima Centauri) is about 4.22 light years away. How far is this in kilometers? Explanation/Answer: Multiply…arrow_forward
- I attempted to answer this question and I'm not sure what I am doing wrong. My formula says A.S. = 206265 (separation/distance from observer) I know to convert to the same units, so I ended up with 80 Million Km being 8 x 10 ^ -6 LY Could you please explain each step especially for the part that I got wrong for both A and B?arrow_forwardA Cepheid variable has a period of 17 days and an average apparent magnitude of 23. Find its distance from us. The absolute magnitude of the Sun is 4.83. A. 3 Mpc B. 0.3 Mpc C. 30 Mpc D. 300 Mpc Is the answer D? Thanks!arrow_forward1. Suppose you observe a tight eclipsing binary with orbital period of 3 days, and radial velocity semi-amplitude for both components of 80 kilometers/second. a. Without doing any calculation, you know that the mass ratio of the binary is 1:1. Explain why? b. What are the masses and orbital radii of the two stars? c. Suppose the binary is perfectly aligned so each eclipse the center of one star goes across the other. How often do you see an eclipse? d. Suppose one eclipse lasts for 3.5 hours. What is the radius of the stars?arrow_forward
- Which of the following can explain how we can calculate distances to stars despite being able to travel to them? a. Examining stellar spectra b. Period-Luminosity Relations c. Interstellar probes d. Radar e. Triangulation (aka parallax)arrow_forwardB9arrow_forwardCalculate the total apparent magnitude of the binary star system.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning