Pearson eText for College Physics: Explore and Apply -- Instant Access (Pearson+)
2nd Edition
ISBN: 9780137443000
Author: Eugenia Etkina, Gorazd Planinsic
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 19, Problem 22P
* EST Making tea You use an electric teapot to make tea It takes about 2 min to boll 0.5 L of water. (a) Estimate the power of the heater. What are your assumptions? (b) Estimate the current through the heater State your assumptions.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The de-excitation of a state occurs by competing emission and relaxation processes. If the relaxation mechanisms are very effective:a) the emission of radiation is largeb) the emission of radiation is smallc) the emission occurs at a shorter wavelengthd) the de-excitation occurs only by emission processes
m
C
A block of mass m slides down a ramp of height hand
collides with an identical block that is initially at rest.
The two blocks stick together and travel around a loop of
radius R without losing contact with the track. Point A is
at the top of the loop, point B is at the end of a horizon-
tal diameter, and point C is at the bottom of the loop, as
shown in the figure above. Assume that friction between
the track and blocks is negligible.
(a) The dots below represent the two connected
blocks at points A, B, and C. Draw free-body dia-
grams showing and labeling the forces (not com
ponents) exerted on the blocks at each position.
Draw the relative lengths of all vectors to reflect
the relative magnitude of the forces.
Point A
Point B
Point C
(b) For each of the following, derive an expression in
terms of m, h, R, and fundamental constants.
i. The speed of moving block at the bottom of
the ramp, just before it contacts the stationary
block
ii. The speed of the two blocks immediately…
The velocity of an elevator is given by the graph shown.
Assume the positive direction is upward.
Velocity (m/s)
3.0
2.5
2.0
1.5
1.0
0.5
0
0
5.0
10
15
20
25
Time (s)
(a) Briefly describe the motion of the elevator.
Justify your description with reference to the
graph.
(b) Assume the elevator starts from an initial position
of y = 0 at t=0. Deriving any numerical values
you
need from the graph:
i. Write an equation for the position as a
function of time for the elevator from
t=0 to t = 3.0 seconds.
ii. Write an equation for the position as a
function of time for the elevator from t = 3.0
seconds to t = 19 seconds.
(c) A student of weight mg gets on the elevator
and rides the elevator during the time interval
shown in the graph. Consider the force of con-
tact, F, between the floor and the student. How
Justify your answer with reference to the graph
does F compare to mg at the following times?
and your equations above.
i. = 1.0 s
ii. = 10.0 s
Chapter 19 Solutions
Pearson eText for College Physics: Explore and Apply -- Instant Access (Pearson+)
Ch. 19 - Review Question 19.1 What condition(s) is/are...Ch. 19 - Review Question 19.2 Describe the changes in...Ch. 19 - Review Question 19.3 Explain the meaning of the...Ch. 19 - Review Question 19.4 Why does it make sense that...Ch. 19 - Review Question 19.5 What experimental evidence...Ch. 19 - Review Question 19.6 Eugenia says that the power...Ch. 19 - Review Question 19.7 Where is the electric...Ch. 19 - Review Question 19.8 Rank the four identical bulbs...Ch. 19 - Review Question 19.9 What does it mean when you...Ch. 19 - Review Question 19.10 Why does the resistance of a...
Ch. 19 - Two identical bulbs are connected on parallel...Ch. 19 - Compare the potential difference across bulbs 1...Ch. 19 - Two identical bulbs are in series as shown in...Ch. 19 - 4. Which statement below about the potential...Ch. 19 - Three circuits with identical bulbs and emf...Ch. 19 - 6. Rank in order the potential differences across...Ch. 19 - 7. Rank in order the five identical bulbs in the...Ch. 19 - Four identical bulbs are shown in the circuit in...Ch. 19 - Four identical bulbs are shown in the circuit in...Ch. 19 - Consider the circuit in Figure Q19.10. The switch...Ch. 19 - 11. Figure Q19.1 shows graphs for an incandescent...Ch. 19 - If an electric current were due to electrons...Ch. 19 - 13. Three light sources (a lightbulb, a blue LED ...Ch. 19 - What is the role of a battery in an electric...Ch. 19 - 16. Compare and contrast the physical quantities...Ch. 19 - Birds on high power lines Why can birds perch on a...Ch. 19 - 18. Preventing electric shock When a person is...Ch. 19 - (a) Using a voltmeter, how can you determine the...Ch. 19 - (a) What does it mean if the current through a...Ch. 19 - 21. Resistors become warm when there is an...Ch. 19 - At one time aluminum rather than copper wires were...Ch. 19 - 23. How do you connect an ammeter in a circuit to...Ch. 19 - Why do we connect electric devices in a home in...Ch. 19 - 26. Construct an electric circuit that is...Ch. 19 - 27. Most Christmas tree lights with incandescent...Ch. 19 - 28. Two students are arguing. Student A says that...Ch. 19 - Use the laws of energy and charge conservation to...Ch. 19 - When you close the switch in the circuit in Figure...Ch. 19 - 1. A bulb in a table lamp has a current of 0.50 A...Ch. 19 - A long wire is connected to the terminals of a...Ch. 19 - A typical flashlight battery will produce a 0.50-A...Ch. 19 - 4. * Four friends each have a battery, a bulb, and...Ch. 19 - 5. Draw a circuit that has a battery, a lightbulb,...Ch. 19 - Add another battery to the circuit described in...Ch. 19 - Add another lightbulb to the circuit with one...Ch. 19 - A 9.0-V battery is connected to a resistor so that...Ch. 19 - 10. * A graph of the electric potential versus...Ch. 19 - 11. Sketch a potential-versus-location graph for...Ch. 19 - 12. Bio Electric currents in the body A person...Ch. 19 - 13. An automobile lightbulb has a 1.0-A current...Ch. 19 - * If a long wire is connected to the terminals of...Ch. 19 - Determine the current through a 2.5- resistor when...Ch. 19 - 16. * You have a circuit with a 50-Ω, a 100- Ω,...Ch. 19 - You have a circuit with a 50-, a 100- , and a 150-...Ch. 19 - 18. * A toy has two red LEDs (), two green LEDs...Ch. 19 - * You want to power a green LED (VOpenG=2.1V) and...Ch. 19 - 20. * A circuit consists of a green LED and a ...Ch. 19 - 21. * You connect a 50-Ω resistor to a 9-V battery...Ch. 19 - 22. * EST Making tea You use an electric teapot to...Ch. 19 - * If a long wire is connected to the terminals of...Ch. 19 - ** Three friends are arguing with each other. Adam...Ch. 19 - 25. * You have a 40-W lightbulb and a 100-W bulb....Ch. 19 - * Does a 60-W lightbulb have more or less...Ch. 19 - 27. * (a) Write two loop rule equations and one...Ch. 19 - 28. * (a) Write Kirchhoff's loop rule for the...Ch. 19 - 29. * Repeat parts (a) and (b) of the previous...Ch. 19 - * (a) Determine the value of 1 so that there is a...Ch. 19 - 31. ** The current through resistor in Figure...Ch. 19 - andR3 shown in Figure P19.27 satisfy the relation...Ch. 19 - 33. * (a) Write the loop rule for two different...Ch. 19 - 34. ** Determine the value of , shown in Figure...Ch. 19 - * Determine (a) the equivalent resistance of...Ch. 19 - 36. (a) Determine the equivalent resistance of...Ch. 19 - 37. * Determine the equivalent resistance of the...Ch. 19 - * Determine (a) the equivalent resistance of the...Ch. 19 - You close the switch in the circuit in Figure...Ch. 19 - * You close the switch in the circuit in Figure...Ch. 19 - 42. * Home wiring A simplified electrical circuit...Ch. 19 - 43. ** (a) Write Kirchhoff's rules for two loops...Ch. 19 - of internal resistance. Because each row has the...Ch. 19 - 45. Home wiring A 120-V electrical line m a home...Ch. 19 - * Tree lights Nine tree lights are connected m...Ch. 19 - 47. * Two lightbulbs use 30 W and 60 W,...Ch. 19 - * Three identical resistors, when connected in...Ch. 19 - . (a) Determine the power delivered to a resistor...Ch. 19 - * Determine the equivalent resistance of the...Ch. 19 - 51 toI4 from largest to smallest Assume all wires...Ch. 19 - Figure P19.52 shows a real circuit that consists...Ch. 19 - * A 100-m-long copper wire of radius 0.12 mm and...Ch. 19 - 54. * BMT subway rail resistance The BMT subway...Ch. 19 - * Thermometer A platinum resistance thermometer...Ch. 19 - As the potential difference in volts across a thin...Ch. 19 - 57. * BIO Respiration detector A respiration...Ch. 19 - * A wire whose resistance is R is stretched so...Ch. 19 - 59. * Ratio reasoning Determine the ratio of the...Ch. 19 - ** Electronics detective You need to determine the...Ch. 19 - 61. * A battery produces a 2.0-A current when...Ch. 19 - 62. * Resistance of human nerve cell Some human...Ch. 19 - 63. * Conductive textiles Metal strands can be...Ch. 19 - 64. * EST Figure P19.64 shows an I-versus-V graph...Ch. 19 - * EST Figure P19.64 shows an I-versus- V graph for...Ch. 19 - *EST Figure P19.64 shows an I-versus- V graph for...Ch. 19 - * Wiring high-fidelity speakers Your high-fidelity...Ch. 19 - 68 * BIO EST Lifting forearm by electric current...Ch. 19 - 69. * EST Switches You have a power supply, a 10-W...Ch. 19 - ** Wiring a staircase Devise an electric circuit...Ch. 19 - 72. ** EST Electric water heater An electric hot...Ch. 19 - 73. ** BIO EST The hands and arms as a conductor...Ch. 19 - 75. * A nickel wire of length L and a voltmeter...Ch. 19 - ** Solve the previous problem if the internal...Ch. 19 - * EST Figure P19.77 shows an | I | -versus-V graph...Ch. 19 - VI a. Connect a voltmeter to a batterys terminals....Ch. 19 - equaled the number of electrons passing a cross...Ch. 19 - 80. * A 5.0-A current caused by moving electrons...Ch. 19 - 81. ** BIO Current across membrane wall of axon An...Ch. 19 - BIO Signals in nerve cells stimulate muscles The...Ch. 19 - BIO Signals in nerve cells stimulate muscles The...Ch. 19 - BIO Signals in nerve cells stimulate muscles The...Ch. 19 - BIO Signals in nerve cells stimulate muscles The...Ch. 19 - 86. The horizontal 4-Ω resistors in the two...Ch. 19 - 87. Suppose nerve impulses travel at 100 m/s in...Ch. 19 - BIO Effect of electric current on human body Nerve...Ch. 19 - BIO Effect of electric current on human body Nerve...Ch. 19 - BIO Effect of electric current on human body Nerve...Ch. 19 - BIO Effect of electric current on human body Nerve...Ch. 19 - BIO Effect of electric current on human body Nerve...Ch. 19 - BIO Effect of electric current on human body Nerve...Ch. 19 - BIO Effect of electric current on human body Nerve...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
Starting with 10 bacterial cells per milliliter in a sufficient amount of complete culture medium with a 1-hour...
Microbiology with Diseases by Body System (5th Edition)
What type of cut would separate the brain into anterior and posterior parts?
Anatomy & Physiology (6th Edition)
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
2. A man rides a bike along a straight road for 5 min, then has a flat tire. He stops for 5 min to repair the f...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Students are asked to use circular motion to measure the coefficient of static friction between two materials. They have a round turntable with a surface made from one of the materials, for which they can vary the speed of rotation. They also have a small block of mass m made from the sec- ond material. A rough sketch of the apparatus is shown in the figure below. Additionally they have equipment normally found in a physics classroom. Axis m (a) Briefly describe a procedure that would allow you to use this apparatus to calculate the coefficient of static friction, u. (b) Based on your procedure, determine how to analyze the data collected to calculate the coefficient of friction. (c) One group of students collects the following data. r (m) fm (rev/s) 0.050 1.30 0.10 0.88 0.15 0.74 0.20 0.61 0.25 0.58 i. Use the empty spaces in the table as needed to calculate quantities that would allow you to use the slope of a line graph to calculate the coefficient of friction, providing labels with…arrow_forwardPART Aarrow_forwardanswer both questionarrow_forward
- Only part A.) of the questionarrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, −3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forward
- In general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardfine the magnitude of the vector product express in sq meters what direction is the vector product in -z or +zarrow_forward4) Three point charges of magnitude Q1 = +2.0 μC, Q2 = +3.0 μС, Q3 = = +4.0 μС are located at the corners of a triangle as shown in the figure below. Assume d = 20 cm. (a) Find the resultant force vector acting on Q3. (b) Find the magnitude and direction of the force. d Q3 60° d Q1 60° 60° Q2 darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Domestic Electric Circuits; Author: PrepOnGo Class 10 & 12;https://www.youtube.com/watch?v=2ZvWaloQ3nk;License: Standard YouTube License, CC-BY