
Concept explainers
(a)
The neutron and proton numbers for carbon (C), nitrogen (N), and oxygen (O).
(a)

Answer to Problem 1SP
The neutron number for carbon (C) is 6 and proton number of carbon is 6.
The neutron number for Nitrogen (N) is 6 and proton number of Nitrogen is 7.
The neutron number for Oxygen (O) is 6 and proton number of Oxygen is 8.
Explanation of Solution
The number of proton number is equal to the atomic number and proton number plus neutron number is equal to
From the periodic table, the proton number of carbon (C) is 6 and mass number is 12.
Therefore neutron number is
The proton number of Nitrogen (N) is 7 and mass number is 14.
Therefore neutron number is
The proton number of (O) Oxygen is 8 and mass number is 16.
Therefore neutron number is
Thus, the neutron number for carbon (C) is 6 and proton number of carbon is 6.
The neutron number for Nitrogen (N) is 6 and proton number of Nitrogen is 7.
The neutron number for Oxygen (O) is 6 and proton number of Oxygen is 8.
(b)
The ratio of neutrons and protons for the stable isotopes of carbon, Nitrogen and Oxygen.
(b)

Answer to Problem 1SP
The ratio of neutrons and protons for the stable isotopes of carbon, Nitrogen and Oxygen are
Explanation of Solution
The stable isotopes of carbon, Nitrogen and Oxygen are carbon-12, Nitrogen-14 and Oxygen-16 respectively.
In the case of carbon-12 , the neutron number is 6 and proton number is
Write the expression for the ratio of neutron to proton of isotope.
Here,
Substitute
In the case of Nitrogen-14, the neutron number is
Substitute
In the case of Oxygen-16, the neutron number is
Substitute
Conclusion:
Thus, the ratio of neutrons and protons for the stable isotopes of carbon-12, Nitrogen-14 and Oxygen-16 are
(c)
The neutron and proton numbers for silver (Ag), cadmium (Cd), and indium (In).
(c)

Answer to Problem 1SP
The neutron number for silver (Ag) is 61 and proton number of silver is 41.
The neutron number for cadmium (Cd) is 64 and proton number of cadmium is 48.
The neutron number for indium (In) is 66 and proton number of indium is 49.
Explanation of Solution
The number of proton number is equal to the atomic number and proton number plus neutron number is equal to atomic mass. Therefore mass number minus atomic number will give neutron number.
From the periodic table, Atomic number of silver is
Therefore number proton number is
Therefore neutron number is
From the periodic table, Atomic number of cadmium is
Therefore number proton number is
Therefore neutron number is
From the periodic table, Atomic number of indium is
Therefore number proton number is
Therefore neutron number is
Thus, the neutron number for silver (Ag) is 61 and proton number of silver is 41.
The neutron number for cadmium (Cd) is 64 and proton number of cadmium is 48.
The neutron number for indium (In) is 66 and proton number of indium is 49.
(d)
The ratio of neutrons and protons for the stable isotopes of silver, cadmium and indium.
(d)

Answer to Problem 1SP
The ratio of neutrons and protons for the stable isotope of silver is
The ratio of neutrons and protons for the stable isotope of cadmium is
The ratio of neutrons and protons for the stable isotope of indium is
The average value of ratio is
Explanation of Solution
The stable isotopes of silver, cadmium and indium are
In the case of
Write the expression for the ratio of neutron to proton of isotope.
Substitute
In the case of
Substitute
In the case of
Substitute
Write the average value of ratios.
Conclusion:
Thus, the ratio of neutrons and protons for the stable isotope of silver is
The ratio of neutrons and protons for the stable isotope of cadmium is
The ratio of neutrons and protons for the stable isotope of indium is
The average value of ratio is
(e)
The neutron and proton numbers for Thorium (Th), Palladium (Pa), and Uranium (U) and the ratio of neutrons and protons for the stable isotopes of Thorium, Palladium and Uranium.
(e)

Answer to Problem 1SP
The neutron number for Thorium (Th) is 142 and proton number of Thorium is 90.
The neutron number for Palladium (Pa) is 140 and proton number of Palladium is 91.
The neutron number for Uranium (U) is 146 and proton number of Uranium is 92.
Thus, the ratio of neutrons and protons for the stable isotope of Thorium is
The ratio of neutrons and protons for the stable isotope of Palladium is
The ratio of neutrons and protons for the stable isotope of Uranium is
The average value of ratio is
Explanation of Solution
From the periodic table, Atomic number of Thorium is
Therefore number proton number is
Therefore neutron number is
From the periodic table, Atomic number of Palladium is
Therefore number proton number is
Therefore neutron number is
From the periodic table, Atomic number of Uranium is
Therefore number proton number is
Therefore neutron number is
The stable isotopes of Thorium, Palladium, and Uranium are Thorium-232, Palladium-231, and Uranium-
In the case of
Write the expression for the ratio of neutron to proton of isotope.
Substitute
In the case of
Substitute
In the case of
Substitute
Write the average value of ratios.
Conclusion:
Thus, the neutron number for Thorium (Th) is 142 and proton number of Thorium is 90.
The neutron number for Palladium (Pa) is 140 and proton number of Palladium is 91.
The neutron number for Uranium (U) is 146 and proton number of Uranium is 92.
The ratio of neutrons and protons for the stable isotope of Thorium is
The ratio of neutrons and protons for the stable isotope of Palladium is
The ratio of neutrons and protons for the stable isotope of Uranium is
The average value of ratio is
(f)
Why there are extra neutrons when uranium or thorium undergo fission by comparing the ratios of parts b, d, and e.
(f)

Answer to Problem 1SP
The ratio of neutron to proton for heavy nuclei are very large compared to medium nuclei and light nuclei. Therefore during fission these heavy nuclei have to produce extra neutrons to get stable medium nuclei or lighter nuclei.
Explanation of Solution
The neutron to proton ratio simply gives the idea about the extra number of neutron present in the nucleus.
The neutron to proton ratio for heavy nuclei is around
Therefore during fission of heavier to medium nuclei requires emission of extra neutron to get stable nuclei.
Conclusion:
Thus, the ratio of neutron to proton for heavy nuclei are very large compared to medium nuclei and light nuclei. Therefore during fission these heavy nuclei have to produce extra neutrons to get stable medium nuclei or lighter nuclei.
Want to see more full solutions like this?
Chapter 19 Solutions
Physics of Everyday Phenomena
- 2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward9). A series RC circuit has a time constant of 1.0 s. The battery has a voltage of 50 V and the maximum current just after closing the switch is 500 mA. The capacitor is initially uncharged. What is the charge on the capacitor 2.0 s after the switch is closed? R 50 V a. 0.43 C b. 0 66 C c. 0.86 C d. 0.99 C Carrow_forward1). Determine the equivalent capacitance of the combination shown when C = 12 pF. +11/20 2C C Carrow_forward
- 3). When a capacitor has a charge of magnitude 80 μC on each plate the potential difference across the plates is 16 V. How much energy is stored in this capacitor when the potential difference across its plates is 42 V? a. 1.0 mJ b. 4.4 mJ c. 3.2 mJ d. 1.4 mJ e. 1.7 mJarrow_forward5). A conductor of radius r, length & and resistivity p has resistance R. It is melted down and formed into a new conductor, also cylindrical, with one fourth the length of the original conductor. The resistance of the new conductor is a. 1 R 161 b. 1 R C. R d. 4R e. 16Rarrow_forward8). Determine the magnitude and sense (direction) of the current in the 10-Q2 resistor when I = 1.8 A. 30 V L 50 V 10 Ω 20 Ω a. 1.6 A right to left b. 1.6 A left to right C. 1.2 A right to left d. 1.2 A left to right e. 1.8 A left to right R PGarrow_forward
- 7). Determine the current in the 10-V emf. 5.0 0 w 10 V 5.0 0 15 V 5.0 Ω a. 2.3 A b. 2.7 A c. 1.3 A d. 0.30 A e. 2.5 Aarrow_forward4). What is the resistance of a wire made of a material with a resistivity of 3.2 is 2.5 m and its diameter is 0.50 mm? a. 0.16 Ω b. 0.10 2 C. c. 1.28 Ω d. 0.41 2 e. 0.81 2 108 m if its lengtharrow_forwardA flat circular coil with 135 turns, a radius of 2.28 x 10-2 m, and a resistance of 0.618 is exposed to an external magnetic field that is directed perpendicular to the plane of the coil. The magnitude of the external magnetic field is changing at a rate of AB/At = 0.615 T/s, thereby inducing a current in the coil. Find the magnitude of the magnetic field at the center of the coil that is produced by the induced current. Numberarrow_forward
- please solve the question attachedarrow_forwardSketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone. Sketch the resulting complex wave form that results from the combination of the following two waves. Is this wave periodic or aperiodic? USE GRAPH PAPER!arrow_forwardRequired information A bungee jumper leaps from a bridge and undergoes a series of oscillations. Assume g = 9.78 m/s². If a 60.0-kg jumper uses a bungee cord that has an unstretched length of 30.1 m and she jumps from a height of 45.2 m above a river, coming to rest just a few centimeters above the water surface on the first downward descent, what is the period of the oscillations? Assume the bungee cord follows Hooke's law.arrow_forward
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning





