Concept explainers
(a)
The other particle emerged from the nitrogen gas in Rutherford Scattering experiment in which he bombarded a sample of nitrogen gas with a beam of alpha particles.
(a)
Answer to Problem 1CQ
Proton is the other particle emerged in the experiment.
Explanation of Solution
Given info: Rutherford bombarded a sample of nitrogen gas with a beam of alpha particles.
Proton is a positively charged particle with magnitude is equal to that of electronic charge .the mass of the proton is
In Alpha particle scattering experiment, Along with the deflected alpha particles, a positively charged particles were emitted. Rutherford observed the new particle behaving like nuclei of hydrogen atom.
By repeated experiment with gases he confirmed that it is new particle in side the nucleus and called as proton.
Conclusion:
Thus, Proton is the other particle emerged in the experiment.
(b)
The conclusion of the experiment.
(b)
Answer to Problem 1CQ
The protons are coming from the nucleus because no proton presented in the initial state.
Explanation of Solution
In the alpha particle experiment the mass of the a beam of alpha particles were bombarded with nitrogen gas while only few were deflected most of them passed through the gas. A new particles were observed with positive charge with magnitude equal to electronic charge.
These particle behaved like hydrogen nucleus and Rutherford observed these particle in other gas medium like helium, nitrogen and carbon. So he confirmed that hydrogen nucleus is a basic constituent of the nucleus of other elements. This particle named proton. Since only few observed he confirmed it is coming from the nucleus.
Conclusion:
Thus, the protons are coming from the nucleus because no proton presented in the initial state.
Want to see more full solutions like this?
Chapter 19 Solutions
Physics of Everyday Phenomena
- (a) Calculate the number of grams of deuterium in an 80.000L swimming pool, given deuterium is 0.0150% of natural hydrogen. (b) Find the energy released in joules if this deuterium is fused via the reaction 2H+2H3He+n. (c) Could the neutrons be used to create more energy? (d) Discuss the amount of this type of energy in a swimming pool as compared to that in, say, a gallon of gasoline, also taking into consideration that water is far more abundant.arrow_forwardIntegrated Concepts: (a) What temperature gas would have atoms moving fast enough to bring two 3He nuclei into contact? Note that, because both are moving, the average kinetic energy only needs to be half the electric potential energy of these doubly charged nuclei when just in contact with one another. (b) Does this high temperature imply practical difficulties for doing this in controlled fusion?arrow_forwardUnreasonable Results The relatively scarce naturally occurring calcium isotope 48Ca has a halflife at about 21016y. (a) A small sample of this isotope is labeled as having an activity of 1.0 Ci. What is the mass of the 48Ca in the sample? (b) What is unreasonable about this result? (c) What assumption is responsible?arrow_forward
- (a) Calculate the radius of 58Ni, one of the most tightly bound stable nuclei. (b) What is the ratio of the radius of 58Ni to that at 258Ha, one of the largest nuclei ever made? Note that the radius of the largest nucleus is still much smaller than ?le size of an atom.arrow_forward(a) An aspiring physicist wants to build a scale model of a hydrogen atom for her science fair project. If the atom is 1.00 m in diameter, how big should she try to make the nucleus? (b) How easy will this be to do?arrow_forwardData from the appendices and the periodic table may be needed for these problems. Unreasonable Results (a) Repeat Exercise 31.57 but include the 0.0055% natural abundance of 234U with its 2.45105y halflife. (b) What is unreasonable about this result? (c) What assumption is responsible? (d) Where does the 234U come from if it is not primordial?arrow_forward
- Why is the number of neutrons greater than the number of protons in stable nuclei that have an A greater than about 40? Why is this effect more pronounced for the heaviest nuclei?arrow_forwardA radiationenhanced nuclear weapon (or neutron bomb) can have a smaller total yield and still produce more prompt radiation than a conventional nuclear bomb. This allows the use of neutron bombs to kill nearby advancing enemy forces with radiation without blowing up your own forces with the blast. For a 0.500kT radiationenhanced weapon and a 1.00kT conventional nuclear bomb: (a) Compare the blast yields. (b) Compare the prompt radiation yields.arrow_forward(a) Calculate the energy released in the a decay of 238U . (b) What fraction of the mass of a single 238U is destroyed in the decay? The mass of 234Th is 234.043593 u. (c) Although the fractional mass loss is large for a single nucleus, it is difficult to observe for an entire macroscopic sample of uranium. Why is this?arrow_forward
- The purpose of producing 99Mo (usually by neutron activation of natural molybdenum, as in the preceding problem) is to produce 99mTc. Using the rules, verily that the decay of 99Mo produces 99mTc. (Most 99mTc nuclei produced in this decay are left in a metastable excited state denoted 99mTc.)arrow_forward(a) Calculate the energy released in the a decay of 238U. (b) What fraction of the mass at a single 238U is destroyed in the decay? The mass of 234Th is 234.043593 u. (c) Although the fractional mass loss is laws for a single nucleus, it is difficult to observe for an entire macroscopic sample of uranium. Why is this?arrow_forwardUnreasonable Results A physicist scatters (rays from a substance and sees evidence of a nucleus 7.51013m in radius. (a) Find the atomic mass of such a nucleus. (b) What is unreasonable about this result? (c) What is unreasonable about the assumption?arrow_forward
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning