Concept explainers
(a)
Interpretation:
To determine the ligand and their charges in
Concept introduction:
Coordination compounds are those in which a transition metal atom is bonded to a ligand which can be neutral, cation or anion. The
A ligand is an atom or a group of atoms or an anion that has an unshared pair of electrons.Thus, it can act as a Lewis base. It can donate its pair of electrons to the metal atom to form a coordinate bond with the transition metal atom.
Answer to Problem 1QAP
The ligands in the given complex ion are ammonia, oxalate and chloride ion.
Ammonia is a neutral ligand, while chloride ion carries a charge of -1 and oxalate ion carries a charge of -2.
Explanation of Solution
In the given compound,
Oxalate is denoted by the symbol ‘ox’ and its chemical formula is (C2 O4 ). It is a bidentate ligand as it can forms coordination bond with the transition metal element through two of its oxygen atoms and it carries a charge of -2, one negative charge on each of the terminal oxygen atoms.
Ammonia (NH3 ) is also a monodentate as it forms single coordinate bond with the central metal atom, and it is a neutral ligand as it carries no charge.
Cl- is a monodentate ligand as it forms single coordinate bond with central metal atom.
(b)
Interpretation:
To determine the oxidation state of iron in
Concept introduction:
Coordination compounds are those in which a transition metal atom is bonded to a ligand which can be neutral, cation or anion. The transition metal element is enclosed within a bracket and a charge is present on the ion to balance the charge present on the ligands.
A ligand is an atom or a group of atoms or an anion that has an unshared pair of electrons and thus it can act as a Lewis base. It can donate its pair of electrons to the metal atom to form a coordinate bond with the transition metal atom.
Answer to Problem 1QAP
The oxidation number of ironis +2 in thiscomplex ion.
Explanation of Solution
In the given compound,
Oxalate is denoted by the symbol ‘ox’ and its chemical formula is (C2 O4 ). It is a bidentate ligand as it can forms coordination bond with the transition metal element through two of its oxygen atoms and it carries a charge of -2, one negative charge on each of the terminal oxygen atoms.
Ammonia (NH3 ) is also a monodentate as it forms single coordinate bond with the central metal atom and it is a neutral ligand as it carries no charge.
Cl- is a monodentate ligand as it forms single coordinate bond with central metal atom.
The total charge on this complex ion is -3. Let ‘x’ be the oxidation number of the central metal atom which is ‘Fe’.
-3 = x + 2 (-2) + 1 (0) + 1(-1)
-3 = x -4-1
-3 +5 = x
x = +2
(c)
Interpretation:
To determine formula of the potassium salt of
Concept introduction:
Coordination compounds are those in which a transition metal atom is bonded to a ligand which can be neutral, cation or anion. The transition metal element is enclosed within a bracket and a charge is present on the ion to balance the charge present on the ligands.
A ligand is an atom or a group of atoms or an anion that has an unshared pair of electrons and thus it can act as a Lewis base. It can donate its pair of electrons to the metal atom to form a coordinate bond with the transition metal atom.
Answer to Problem 1QAP
The chemical formula of the potassium salt of the given complex ion is
Explanation of Solution
In the given compound,
The total charge on this complex ion is -3. This charge can be neutralized by the presence of three monovalent positively charged cations.
This means that when three potassium ions come in contact with this complex ion, a new potassium salt can be formed with the chemical formula as
Formation of this new potassium salt can be explained as:
Want to see more full solutions like this?
Chapter 19 Solutions
OWLV2 FOR MASTERTON/HURLEY'S CHEMISTRY:
- 3. Draw the expanded structural formula, the condensed structural formula, and the skeletal structural formula for 2-pentene. expanded structure: Condensed structure: Skeletal formula: 4. Draw the expanded structural formula, the condensed structural formula, and the skeletal structural formula for 2-methyl-3-heptene. expanded structure: Condensed structure: Skeletal formula: following structurearrow_forwardPart IV. Propose a plausible Structure w/ the following descriptions: a) A 5-carbon hydrocarbon w/ a single peak in its proton decoupled the DEPT-135 Spectrum shows a negative peak C-NMR spectrum where b) what cyclohexane dione isomer gives the largest no. Of 13C NMR signals? c) C5H120 (5-carbon alcohol) w/ most deshielded carbon absent in any of its DEPT Spectivaarrow_forward13C NMR is good for: a) determining the molecular weight of the compound b) identifying certain functional groups. c) determining the carbon skeleton, for example methyl vs ethyl vs propyl groups d) determining how many different kinds of carbon are in the moleculearrow_forward
- 6 D 2. (1 pt) Limonene can be isolated by performing steam distillation of orange peel. Could you have performed this experiment using hexane instead of water? Explain. 3. (2 pts) Using GCMS results, analyze and discuss the purity of the Limonene obtained from the steam distillation of orange peel.arrow_forwardPart III. Arrange the following carbons (in blue) in order of increasing chemical shift. HO B NH 2 A CIarrow_forward6. Choose the compound that will produce the spectrum below and assign the signals as carbonyl, aryl, or alkyl. 100 ō (ppm) 50 0 7. 200 150 Assign all of the protons on the spectrum below. 8. A B 4 E C 3 ō (ppm) 2 1 0 Choose the compound that will produce the spectrum below and assign the signals to the corresponding protons. OH 6 OH 3 2 1 0 4 ō (ppm)arrow_forward
- In the Thermo Fisher application note about wine analysis (Lesson 3), the following chromatogram was collected of nine components of wine. If peak 3 has a retention time of 3.15 minutes and a peak width of 0.070 minutes, and peak 4 has a retention time of 3.24 minutes and a peak width of 0.075 minutes, what is the resolution factor between the two peaks? [Hint: it will help to review Lesson 2 for this question.] MAU 300 200 T 34 5 100- 1 2 CO 6 7 8 9 0 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 Minutes 3.22 0.62 1.04 O 1.24arrow_forwardThe diagram shows two metals, A and B, which melt at 1000°C and 1400°C. State the weight percentage of the primary constituent (grains of C) that would be obtained by solidifying a 20% alloy of B. 1000°C a+L L+C 900°С 12 α a+C 45 1200 C L+y 140096 C+Y a+ß 800°C 700°C C+B 96 92 a+B 0 10 20 30 40 50 60 70 80 90 100 A % peso B Barrow_forward8. Choose the compound that will produce the spectrum below and assign the signals to the corresponding protons. 2 4 3 ō (ppm) OH 4 6 6 СОН 2 1 0arrow_forward
- 7. Assign all of the protons on the spectrum below. A B 2 C E 2 1 3 6 4 3 2 1 0arrow_forwarde. If (3R,4R)-3,4-dichloro-2,5-dimethylhexane and (3R,4S)-3,4-dichloro-2,5-dimethylhexane are in a solution at the same concentration, would this solution be expected to rotate plane polarized light (that is, be optically active)? Please provide your reasoning for your answer. [If you read this problem carefully, you will not need to draw out the structures to arrive at your answer...]arrow_forward1. How many neighbors does the proton that produces the multiplet below have? 2. 3. اللـ Draw a partial structure from the multiplet below. (The integration of the multiplet is 6) M Using the additivity constants found in appendix G of your lab manual, calculate the approximate chemical shifts of the protons indicated below. (Show your work!!!) B A Br SHarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning