Laboratory Techniques in Organic Chemistry
Laboratory Techniques in Organic Chemistry
4th Edition
ISBN: 9781464134227
Author: Jerry R. Mohrig, David Alberg, Gretchen Hofmeister, Paul F. Schatz, Christina Noring Hammond
Publisher: W. H. Freeman
Question
Book Icon
Chapter 19, Problem 1Q
Interpretation Introduction

Interpretation:

The reason for the level of elution solvent to not drop below the top of the adsorbent should be determined.

Concept introduction:

Liquid chromatography is used for purification of high boiling compounds. It is known as column chromatography. In liquid chromatography, column is packed by stationary phase. Usually, a solid adsorbent with a liquid coated on it is used as stationary phase. Often a pure liquid or solution of liquids composes the mobile phase. It is also called the elution solvent.

The elution solvent comes down the column under the influence of gravity. Selective interactions are responsible for separation of the sample among stationary and mobile phases. The sequence of elution of compounds from sample depends on the polarity of mobile and stationary phases.

Expert Solution & Answer
Check Mark

Explanation of Solution

The packing of a column is an important factor for the success of the chromatographic separation in addition to the choice of adsorbent and elution solvents.

If cracks or channels are present in the column or if the top surface is not flat, then separation in the chromatographic column will be poor.

If the adsorbent becomes dry, it may drift away from the walls of the column and form channels. Once a chromatographic separation begins, it is essential to finish it without interruption.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
b) Certain cyclic compounds are known to be conformationally similar to carbohydrates, although they are not themselves carbohydrates. One example is Compound C shown below, which could be imagined as adopting four possible conformations. In reality, however, only one of these is particularly stable. Circle the conformation you expect to be the most stable, and provide an explanation to justify your choice. For your explanation to be both convincing and correct, it must contain not only words, but also "cartoon" orbital drawings contrasting the four structures. Compound C Possible conformations (circle one): Дет
Lab Data The distance entered is out of the expected range. Check your calculations and conversion factors. Verify your distance. Will the gas cloud be closer to the cotton ball with HCI or NH3? Did you report your data to the correct number of significant figures? - X Experimental Set-up HCI-NH3 NH3-HCI Longer Tube Time elapsed (min) 5 (exact) 5 (exact) Distance between cotton balls (cm) 24.30 24.40 Distance to cloud (cm) 9.70 14.16 Distance traveled by HCI (cm) 9.70 9.80 Distance traveled by NH3 (cm) 14.60 14.50 Diffusion rate of HCI (cm/hr) 116 118 Diffusion rate of NH3 (cm/hr) 175.2 175.2 How to measure distance and calculate rate
For the titration of a divalent metal ion (M2+) with EDTA, the stoichiometry of the reaction is typically: 1:1 (one mole of EDTA per mole of metal ion) 2:1 (two moles of EDTA per mole of metal ion) 1:2 (one mole of EDTA per two moles of metal ion) None of the above

Chapter 19 Solutions

Laboratory Techniques in Organic Chemistry

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:9781285640686
Author:Skoog
Publisher:Cengage
Text book image
EBK A SMALL SCALE APPROACH TO ORGANIC L
Chemistry
ISBN:9781305446021
Author:Lampman
Publisher:CENGAGE LEARNING - CONSIGNMENT
Text book image
Macroscale and Microscale Organic Experiments
Chemistry
ISBN:9781305577190
Author:Kenneth L. Williamson, Katherine M. Masters
Publisher:Brooks Cole