The equilibrium constant of given cell reaction should be calculated by using standard reduction potentials. Concept introduction: Cell potential (EMF): The maximum potential difference between two electrodes in the voltaic cell is known as cell potential. If standard reduction potentials of electrodes are given the cell potential (EMF) is given by, E cell = E cathode -E anode Where, E cathode is the reduction half cell potential E anode is the oxidation half cell potential Equilibrium constant K c : The relationship between equilibrium constant and cell potential (EMF) is given by below equation, E cell = RT nF lnK c Where, K c is equilibrium constant n is number of electron transferred F is faraday constant E cell is cell potential R is gas constant(8 .314J/mol K) T is temprrature (25°C)
The equilibrium constant of given cell reaction should be calculated by using standard reduction potentials. Concept introduction: Cell potential (EMF): The maximum potential difference between two electrodes in the voltaic cell is known as cell potential. If standard reduction potentials of electrodes are given the cell potential (EMF) is given by, E cell = E cathode -E anode Where, E cathode is the reduction half cell potential E anode is the oxidation half cell potential Equilibrium constant K c : The relationship between equilibrium constant and cell potential (EMF) is given by below equation, E cell = RT nF lnK c Where, K c is equilibrium constant n is number of electron transferred F is faraday constant E cell is cell potential R is gas constant(8 .314J/mol K) T is temprrature (25°C)
Solution Summary: The author explains that the equilibrium constant of given cell reaction should be calculated by using standard reduction potentials.
What are the IUPAC Names of all the compounds in the picture?
1) a) Give the dominant Intermolecular Force (IMF) in a sample of each of the following
compounds. Please show your work. (8) SF2, CH,OH, C₂H₂
b) Based on your answers given above, list the compounds in order of their Boiling Point
from low to high. (8)
19.78 Write the products of the following sequences of reactions. Refer to your reaction road-
maps to see how the combined reactions allow you to "navigate" between the different
functional groups. Note that you will need your old Chapters 6-11 and Chapters 15-18
roadmaps along with your new Chapter 19 roadmap for these.
(a)
1. BHS
2. H₂O₂
3. H₂CrO4
4. SOCI₂
(b)
1. Cl₂/hv
2. KOLBU
3. H₂O, catalytic H₂SO4
4. H₂CrO4
Reaction
Roadmap
An alkene 5. EtOH
6.0.5 Equiv. NaOEt/EtOH
7. Mild H₂O
An alkane
1.0
2. (CH3)₂S
3. H₂CrO
(d)
(c)
4. Excess EtOH, catalytic H₂SO
OH
4. Mild H₂O*
5.0.5 Equiv. NaOEt/EtOH
An alkene 6. Mild H₂O*
A carboxylic
acid
7. Mild H₂O*
1. SOC₁₂
2. EtOH
3.0.5 Equiv. NaOEt/E:OH
5.1.0 Equiv. NaOEt
6.
NH₂
(e)
1. 0.5 Equiv. NaOEt/EtOH
2. Mild H₂O*
Br
(f)
i
H
An aldehyde
1. Catalytic NaOE/EtOH
2. H₂O*, heat
3. (CH,CH₂)₂Culi
4. Mild H₂O*
5.1.0 Equiv. LDA
Br
An ester
4. NaOH, H₂O
5. Mild H₂O*
6. Heat
7.
MgBr
8. Mild H₂O*
7. Mild H₂O+
Chapter 19 Solutions
Student Solutions Manual for Ebbing/Gammon's General Chemistry, 11th
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell