The free energy change of given voltaic cell should be calculated by using standard reduction potentials. Concept introduction: Cell potential (EMF): The maximum potential difference between two electrodes in the voltaic cell is known as cell potential. If standard reduction potentials of electrodes are given the cell potential (EMF) is given by, E cell = E cathode -E anode Where, E cathode is the reduction half cell potential E anode is the oxidation half cell potential Free energy change: In thermodynamics the cell potential is known as maximum work of the cell and it is equal to free energy change of the cell and it is given by, ΔG = -nFE cell Where, ΔG is free energy change n is number of electron transferred F is faraday constant E cell is cell potential
The free energy change of given voltaic cell should be calculated by using standard reduction potentials. Concept introduction: Cell potential (EMF): The maximum potential difference between two electrodes in the voltaic cell is known as cell potential. If standard reduction potentials of electrodes are given the cell potential (EMF) is given by, E cell = E cathode -E anode Where, E cathode is the reduction half cell potential E anode is the oxidation half cell potential Free energy change: In thermodynamics the cell potential is known as maximum work of the cell and it is equal to free energy change of the cell and it is given by, ΔG = -nFE cell Where, ΔG is free energy change n is number of electron transferred F is faraday constant E cell is cell potential
Solution Summary: The author explains that the free energy change of a given voltaic cell should be calculated by using standard reduction potentials.
(f) SO:
Best Lewis Structure
3
e group geometry:_
shape/molecular geometry:,
(g) CF2CF2
Best Lewis Structure
polarity:
e group arrangement:_
shape/molecular geometry:
(h) (NH4)2SO4
Best Lewis Structure
polarity:
e group arrangement:
shape/molecular geometry:
polarity:
Sketch (with angles):
Sketch (with angles):
Sketch (with angles):
1.
Problem Set 3b
Chem 141
For each of the following compounds draw the BEST Lewis Structure then sketch the molecule (showing
bond angles). Identify (i) electron group geometry (ii) shape around EACH central atom (iii) whether the
molecule is polar or non-polar (iv)
(a) SeF4
Best Lewis Structure
e group arrangement:_
shape/molecular geometry:
polarity:
(b) AsOBr3
Best Lewis Structure
e group arrangement:_
shape/molecular geometry:
polarity:
Sketch (with angles):
Sketch (with angles):
(c) SOCI
Best Lewis Structure
2
e group arrangement:
shape/molecular geometry:_
(d) PCls
Best Lewis Structure
polarity:
e group geometry:_
shape/molecular geometry:_
(e) Ba(BrO2):
Best Lewis Structure
polarity:
e group arrangement:
shape/molecular geometry:
polarity:
Sketch (with angles):
Sketch (with angles):
Sketch (with angles):
Chapter 19 Solutions
Student Solutions Manual for Ebbing/Gammon's General Chemistry, 11th
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell