Review. A steel wire and a copper wire, each of diameter 2.000 mm, are joined end to end. At 40.0°C, each has an unstretched length of 2.000 m. The wires are connected between two fixed supports 4.000 m apart on a tabletop. The steel wire extends from x = –2.000 m to x = 0, the copper wire extends from x = 0 to x = 2.000 m, and the tension is negligible. The temperature is then lowered to 20.0°C. Assume the average coefficient of linear expansion of steel is 11.0 × 10–6 (°C)–1 and that of copper is 17.0 × 10–6 (°C)–1. Take Youngs modulus for steel to be 20.0 × 1010 N/m2 and that for copper to be 11.0 × 1010 N/m2. At this lower temperature, find (a) the tension in the wire and (b) the x coordinate of the junction between the wires.
(a)
The tension in the wire.
Answer to Problem 19.72CP
The tension in the wire is
Explanation of Solution
Given Info: The diameter of both the wires is
Formula to calculate the radius of the wire is,
Here,
Substitute
Thus, the value of the radius is
The initial area of cross section of the steel wire is,
Substitute
Thus, the value of the initial area of cross section of the steel wire is
Substitute
Thus, the value of the initial area of cross section of the copper wire is
When the wire is stretched its length and its area of cross section both have changed.
Formula to calculate the new area of cross section of the steel wire is,
Substitute
Thus, the value of the final area of cross section of the steel wire is
Formula to calculate the new area of cross section of the copper wire is,
Substitute
Thus, the value of the final area of cross section of the copper wire is
Formula to calculate the final length of the steel wire under a tension
Here,
Formula to calculate the final length of the copper wire under a tension
Here,
Formula to calculate the tension in the composite wire is,
Substitute
Conclusion:
Thus, the tension in the wire is
(b)
The x-coordinate of the junction between the wires.
Answer to Problem 19.72CP
The final x-coordinate is
Explanation of Solution
Given Info: The diameter of both the wires is
Formula to calculate the final length of the steel wire under a tension
Here,
Substitute
Thus, the final length of the steel wire under a tension
Formula to find final x coordinate is,
Here,
Substitute
Conclusion:
Therefore, the final x-coordinate is
Want to see more full solutions like this?
Chapter 19 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- No chatgpt pls will upvotearrow_forward1.62 On a training flight, a Figure P1.62 student pilot flies from Lincoln, Nebraska, to Clarinda, Iowa, next to St. Joseph, Missouri, and then to Manhattan, Kansas (Fig. P1.62). The directions are shown relative to north: 0° is north, 90° is east, 180° is south, and 270° is west. Use the method of components to find (a) the distance she has to fly from Manhattan to get back to Lincoln, and (b) the direction (relative to north) she must fly to get there. Illustrate your solutions with a vector diagram. IOWA 147 km Lincoln 85° Clarinda 106 km 167° St. Joseph NEBRASKA Manhattan 166 km 235° S KANSAS MISSOURIarrow_forwardPlz no chatgpt pls will upvotearrow_forward
- 3.19 • Win the Prize. In a carnival booth, you can win a stuffed gi- raffe if you toss a quarter into a small dish. The dish is on a shelf above the point where the quarter leaves your hand and is a horizontal dis- tance of 2.1 m from this point (Fig. E3.19). If you toss the coin with a velocity of 6.4 m/s at an angle of 60° above the horizontal, the coin will land in the dish. Ignore air resistance. (a) What is the height of the shelf above the point where the quarter leaves your hand? (b) What is the vertical component of the velocity of the quarter just before it lands in the dish? Figure E3.19 6.4 m/s 2.1arrow_forwardCan someone help me answer this thank you.arrow_forward1.21 A postal employee drives a delivery truck along the route shown in Fig. E1.21. Determine the magnitude and direction of the resultant displacement by drawing a scale diagram. (See also Exercise 1.28 for a different approach.) Figure E1.21 START 2.6 km 4.0 km 3.1 km STOParrow_forward
- help because i am so lost and it should look something like the picturearrow_forward3.31 A Ferris wheel with radius Figure E3.31 14.0 m is turning about a horizontal axis through its center (Fig. E3.31). The linear speed of a passenger on the rim is constant and equal to 6.00 m/s. What are the magnitude and direction of the passenger's acceleration as she passes through (a) the lowest point in her circular motion and (b) the high- est point in her circular motion? (c) How much time does it take the Ferris wheel to make one revolution?arrow_forward1.56 ⚫. Three horizontal ropes pull on a large stone stuck in the ground, producing the vector forces A, B, and C shown in Fig. P1.56. Find the magnitude and direction of a fourth force on the stone that will make the vector sum of the four forces zero. Figure P1.56 B(80.0 N) 30.0 A (100.0 N) 53.0° C (40.0 N) 30.0°arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning