University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 19, Problem 19.57P
Use the conditions and processes of Problem 19.56 to compute (a) the work done by the gas, the heat added to it. And its internal energy change during the initial compression; (b) the work done by the gas, the heat added to it, and its internal energy change during the adiabatic expansion; (c) the work done, the heat added, and the internal energy change during the final heating.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a constant-volume process, 208 J of energy is transferred by heat to 1.07 mol of an ideal monatomic gas initially at 303 K.
(a) Find the work done on the gas.
(b) Find the increase in internal energy of the gas.
(c) Find its final temperature.
K
10 litres of gas at atmospheric pressure is compressed isothermally to a volume of 1 litre and then allowed to expand adiabatically to 10 litres. (a) Sketch the processes on a pV diagram for a monatomic gas. (b) Make a similar sketch for a diatomic gas. (c) Is a net work done on or by the system? (d) Is it greater or less for the diatomic gas?
Consider a 1 mole of an ideal gas at 25.00 oC. This gas is allowed to expand reversibly and isothermally from a volume of 7.95 liters to 117.61 liters. Calculate the work done by the gas in joules. Answer in 6 significant figures.
Chapter 19 Solutions
University Physics (14th Edition)
Ch. 19 - Prob. Q19.1DQCh. 19 - Prob. Q19.2DQCh. 19 - In which situation must you do more work:...Ch. 19 - Prob. Q19.4DQCh. 19 - Discuss the application of the first law of...Ch. 19 - When ice melts at 0C, its volume decreases. Is the...Ch. 19 - You hold an inflated balloon over a hot-air vent...Ch. 19 - You bake chocolate chip cookies and put them,...Ch. 19 - Imagine a gas made up entirely of negatively...Ch. 19 - In an adiabatic process for an ideal gas, the...
Ch. 19 - When you blow on the back of your hand with your...Ch. 19 - An ideal gas expands while the pressure is kept...Ch. 19 - A liquid is irregularly stirred in a...Ch. 19 - When you use a hand pump to inflate the tires of...Ch. 19 - In the carburetor of an aircraft or automobile...Ch. 19 - On a sunny day, large bubbles of air form on the...Ch. 19 - The prevailing winds on the Hawaiian island of...Ch. 19 - Applying the same considerations as in Question...Ch. 19 - In a constant-volume process, dU = nCV dT. But in...Ch. 19 - When a gas surrounded by air is compressed...Ch. 19 - When a gas expands adiabatically, it does work on...Ch. 19 - Prob. Q19.22DQCh. 19 - A system is taken from state a to state b along...Ch. 19 - A thermodynamic system undergoes a cyclic process...Ch. 19 - Two moles of an ideal gas are heated at constant...Ch. 19 - Six moles of an ideal gas are in a cylinder fitted...Ch. 19 - Prob. 19.3ECh. 19 - BIO Work Done by the Lungs. The graph in Fig....Ch. 19 - CALC During the time 0.305 mol of an ideal gas...Ch. 19 - A gas undergoes two processes. In the first, the...Ch. 19 - Work Done in a Cyclic Process. (a) In Fig. 19.7a,...Ch. 19 - Figure E19.8 shows a pV-diagram for an ideal gas...Ch. 19 - A gas in a cylinder expands from a volume of 0.110...Ch. 19 - Five moles of an ideal monatomic gas with an...Ch. 19 - The process abc shown in the pV-diagram in Fig....Ch. 19 - A gas in a cylinder is held at a constant pressure...Ch. 19 - The pV-diagram in Fig. E19.13 shows a process abc...Ch. 19 - Boiling Water at High Pressure. When water is...Ch. 19 - An ideal gas is taken from a to b on the...Ch. 19 - During an isothermal compression of an ideal gas,...Ch. 19 - A cylinder contains 0.250 mol of carbon dioxide...Ch. 19 - A cylinder contains 0.0100 mol of helium at T =...Ch. 19 - In an experiment to simulate conditions inside an...Ch. 19 - When a quantity of monatomic ideal gas expands at...Ch. 19 - Heat Q flows into a monatomic ideal gas, and the...Ch. 19 - Three moles of an ideal monatomic gas expands at a...Ch. 19 - An experimenter adds 970 J of heat to 1.75 mol of...Ch. 19 - Propane gas (C3Hg) behaves like an ideal gas with ...Ch. 19 - CALC The temperature of 0.150 mol of an ideal gas...Ch. 19 - Five moles of monatomic ideal gas have initial...Ch. 19 - A monatomic ideal gas that is initially at 1.50 ...Ch. 19 - The engine of a Ferrari F355 F1 sports car takes...Ch. 19 - During an adiabatic expansion the temperature of...Ch. 19 - A player bounces a basketball on the floor,...Ch. 19 - On a warm summer day, a large mass of air...Ch. 19 - A cylinder contains 0.100 mol of an ideal...Ch. 19 - A quantity of air is taken from state a to state b...Ch. 19 - One-half mole of an ideal gas is taken from state...Ch. 19 - Figure P19.35 shows the pV-diagram for a process...Ch. 19 - The graph in Fig. P19.36 shows a pV-diagram for...Ch. 19 - When a system is taken from state a to state b in...Ch. 19 - A thermodynamic system is taken from state a to...Ch. 19 - A volume of air (assumed to be an ideal gas) is...Ch. 19 - Three moles of argon gas (assumed to be an ideal...Ch. 19 - Two moles of an ideal monatomic gas go through the...Ch. 19 - Three moles of an ideal gas are taken around cycle...Ch. 19 - Figure P19.43 shows a pV-diagram for 0.0040 mol of...Ch. 19 - (a) Onc-third of a mole of He gas is taken along...Ch. 19 - Starting with 2.50 mol of N2 gas (assumed to be...Ch. 19 - Nitrogen gas in an expandable container is cooled...Ch. 19 - CALC A cylinder with a frictionless, movable...Ch. 19 - CP A Thermodynamic Process in a Solid. A cube of...Ch. 19 - Prob. 19.49PCh. 19 - High-Altitude Research. A large research balloon...Ch. 19 - An air pump has a cylinder 0.250 m long with a...Ch. 19 - A certain ideal gas has molar heat capacity at...Ch. 19 - A monatomic ideal gas expands slowly to twice its...Ch. 19 - CALC A cylinder with a piston contains 0.250 mol...Ch. 19 - Use the conditions and processes of Problem 19.54...Ch. 19 - CALC A cylinder with a piston contains 0.150 mol...Ch. 19 - Use the conditions and processes of Problem 19.56...Ch. 19 - Comparing Thermodynamic Processes. In a cylinder,...Ch. 19 - DATA You have recorded measurements of the heat...Ch. 19 - DATA You compress a gas in an insulated cylinderno...Ch. 19 - DATA You place a quantity of gas into a metal...Ch. 19 - Prob. 19.62CPCh. 19 - BIO ANESTHETIC GASES. One type of gas mixture used...Ch. 19 - BIO ANESTHETIC GASES. One type of gas mixture used...Ch. 19 - BIO ANESTHETIC GASES. One type of gas mixture used...Ch. 19 - BIO ANESTHETIC GASES. One type of gas mixture used...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Calculate the average volume per molecule for an ideal gas at room temperature and atmospheric pressure. Then t...
An Introduction to Thermal Physics
Integrated Concepts A 105-kg basketball player crouches down 0.400 m while waiting to jump. After exerting a fo...
College Physics
Choose the best answer to each of the following. Explain your reasoning. The term super-Earth means a planet th...
The Cosmic Perspective Fundamentals (2nd Edition)
12. A 5.0 g coin is placed 15 cm from the center of a turntable. The coin has static and kinetic coefficients o...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
9. What is the difference between the scientific method and the problem-solving method?
Applied Physics (11th Edition)
Choose the best answer to each of the following. Explain your reasoning. Which reason of the early universe was...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- As shown below, calculate the work done by the gas in the quasi-static processes represented by the paths (a) AB; (b) ADB; (c) ACB; and (d) ADCB. `arrow_forwardA copper rod of cross-sectional area 5.0 cm2 and length 5.0 m conducts heat from a heat reservoir at 373 K to one at 273 K. What is the time rate of change of the universe's entropy for this process?arrow_forwardA cylinder containing three moles of a monatomic ideal gas is heated at a constant pressure of 2 atm. The temperature of the gas changes from 300 K to 350 K as a result of the expansion. Find work done (a) on the gas; and (b) by the gas.arrow_forward
- When 400 J of heat are slowly added to 10 mol of an ideal monatomic gas, its temperature rises by 10 . What is the work done on the gas?arrow_forwardTwo moles of a monatomic ideal gas such as helium is compressed adiabatically and reversibly from a state (3 atm, 5 L) to a state with pressure 4 atm. (a) Find the volume and temperature of the final state. (b) Find the temperature of the initial state of the gas. (c) Find the work done by the gas in the process. (d) Find the change in internal energy of the gas in the process.arrow_forwardThe insulated cylinder shown below is closed at both ends and contains an insulating piston that is flee to move on frictionless bearings. The piston divides the chamber into two compartments containing gases A and B. Originally, each compartment has a volume of 5.0102 m3 and contains a monatomic ideal gas at a temperature of and a pressure of 1.0 atm. (a) How many moles of gas are in each compartment? (b) Heat Q is slowly added to A so that it expands and B is compressed until the pressure of both gases is 3.0 atm. Use the fact that the compression of B is adiabatic to determine the final volume of both gases. (c) What are their final temperatures? (d) What is the value of Q?arrow_forward
- A Carnot engine employs 1.5 mol of nitrogen gas as a working substance, which is considered as an ideal diatomic gas with =7.5 at the working temperatures of the engine. The Carnot cycle goes in the cycle ABCDA with AB being an isothermal expansion. The volume at points A and C of the cycle are 5.0103 m3 and 0.15 L, respectively. The engine operates between two thermal baths of temperature 500 K 300 K. (a) Find the values of volume at B and D. (b) How much heat is absorbed by the gas in the AB isothermal expansion? (c) How much work is done by the gas in the AB isothermal expansion? (d) How much heat is given up by the gas in the CD isothermal expansion? (e) How much work is done by the gas in the CD isothermal compression? (f) How much work is done by the gas in the BC adiabatic expansion? (g) How much work is done by the gas in the DA adiabatic compression? (h) Find the value of efficiency of the engine based on the net and heat input. Compare this value to the efficiency of a Carnot engine based on the temperatures of the baths.arrow_forwardA monatomic ideal gas undergoes a quasi-static adiabatic expansion in which its volume is doubled. How is the pressure of the gas changed?arrow_forwardThe energy input to an engine is 3.00 times greater than the work it performs. (i) What is its thermal efficiency? (a) 3.00 (b) 1.00 (c) 0.333 (d) impossible to determine (ii) What fraction of the energy input is expelled to the cold reservoir? (a) 0.333 (b) 0.667 (c) 1.00 (d) impossible to determinearrow_forward
- An ideal gas with specific heat ratio confined to a cylinder is put through a closed cycle. Initially, the gas is at Pi, Vi, and Ti. First, its pressure is tripled under constant volume. It then expands adiabatically to its original pressure and finally is compressed isobarically to its original volume. (a) Draw a PV diagram of this cycle. (b) Determine the volume at the end of the adiabatic expansion. Find (c) the temperature of the gas at the start of the adiabatic expansion and (d) the temperature at the end of the cycle. (e) What was the net work done on the gas for this cycle?arrow_forwardOf the following, which is not a statement of the second law of thermodynamics? (a) No heat engine operating in a cycle can absorb energy from a reservoir and use it entirely to do work, (b) No real engine operating between two energy reservoirs can be more efficient than a Carnot engine operating between the same two reservoirs, (c) When a system undergoes a change in state, the change in the internal energy of the system is the sum of the energy transferred to the system by heat and the work done on the system, (d) The entropy of the Universe increases in all natural processes, (e) Energy will not spontaneously transfer by heat from a cold object to a hot object.arrow_forwardIn a diesel engine, the fuel is ignited without a spark plug. Instead, air in a cylinder is compressed adiabatically to a temperature above the ignition temperature of the fuel; at the point of maximum compression, the fuel is injected into the cylinder. Suppose that air at 20 C is taken into the cylinder at a volume V1 and then compressed adiabatically and quasi-statically to a temperature of 600 C and a volume V2 . If =1.4 , what is the ratio V1/V2 ? (Note: static. In an operating diesel engine, the compression is not quasi-arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY