Concept explainers
(a)
Interpretation:
The mean free paths for argon and xenon atoms are to be calculated.
Concept introduction:
The mean free path of collisions between gaseous atoms is given by the formula given below.
The average collision frequency of one atom is given by the formula,
The total number of collisions is given by the formula,

Answer to Problem 19.49E
The mean free paths for argon and xenon atoms are
Explanation of Solution
The mean free path of collisions between gaseous atoms is given by the formula given below.
Where,
•
•
•
•
Substitute the values in the equation (1) for argon atom as given below.
Substitute the values in the equation (1) for xenon atom as given below.
The mean free paths for argon and xenon atoms are
(b)
Interpretation:
The average collision frequencies for argon and xenon atoms are to be calculated.
Concept introduction:
The mean free path of collisions between gaseous atoms is given by the formula given below.
The average collision frequency of one atom is given by the formula,
The total number of collisions is given by the formula,

Answer to Problem 19.49E
The average collision frequencies for argon and xenon atoms are
Explanation of Solution
The average collision frequency of one atom is given by the formula,
Where,
•
•
•
•
•
The mixture given is a
Substitute the values in the equation (2) for argon atom as given below.
Substitute the values in the equation (2) for xenon atom as given below.
The average collision frequencies for argon and xenon atoms are
(c)
Interpretation:
The total number of collisions between argon and xenon atoms is to be calculated.
Concept introduction:
The mean free path of collisions between gaseous atoms is given by the formula given below.
The average collision frequency of one atom is given by the formula,
The total number of collisions is given by the formula,

Answer to Problem 19.49E
The total number of collisions between argon and xenon atoms is
Explanation of Solution
The total number of collisions is given by the formula,
Where,
•
•
•
•
•
The mixture given is a
Substitute the values in the equation (3) as given below.
The total number of collisions between argon and xenon atoms is
Want to see more full solutions like this?
Chapter 19 Solutions
Student Solutions Manual for Ball's Physical Chemistry, 2nd
- Synthesize 2-Ethyl-3-methyloxirane from dimethyl(propyl)sulfonium iodide using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize 2-Hydroxy-2-phenylacetonitrile from phenylmethanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- Synthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardIf possible, please provide the formula of the compound 3,3-dimethylbut-2-enal.arrow_forwardSynthesize 1,4-dibromobenzene from acetanilide (N-phenylacetamide) using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- Indicate the products obtained by mixing (3-oxo-3-phenylpropyl)triphenylphosphonium bromide with sodium hydride.arrow_forwardWe mix N-ethyl-2-hexanamine with excess methyl iodide and followed by heating with aqueous Ag2O. Indicate the major products obtained.arrow_forwardIndicate the products obtained by mixing acetophenone with iodine and NaOH.arrow_forward
- Indicate the products obtained by mixing 2-Propanone and ethyllithium and performing a subsequent acid hydrolysis.arrow_forwardIndicate the products obtained if (E)-2-butenal and 3-oxo-butanenitrile are mixed with sodium ethoxide in ethanol.arrow_forwardQuestion 3 (4 points), Draw a full arrow-pushing mechanism for the following reaction Please draw all structures clearly. Note that this intramolecular cyclization is analogous to the mechanism for halohydrin formation. COH Br + HBr Brarrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning



