Concept explainers
In a chemical processing plant, a reaction chamber of fixed volume V0 is connected to a reservoir chamber of fixed volume 4V0 by a passage containing a thermally insulating porous plug. The plug permits the chambers to be at different temperatures. The plug allows gas to pass from either chamber to the other, ensuring that the pressure is the same in both. At one point in the processing, both chambers contain gas at a pressure of 1.00 atm and a temperature of 27.0°C. Intake and exhaust valves to the pair of chambers are closed. The reservoir is maintained at 27.0°C while the reaction chamber is heated to 400°C. What is the pressure in both chambers after that is done?
Trending nowThis is a popular solution!
Chapter 19 Solutions
Physics for Scientists and Engineers, Volume 1, Chapters 1-22
- A sealed cubical container 20.0 cm on a side contains a gas with three times Avogadros number of neon atoms at a temperature of 20.0C. (a) Find the internal energy of the gas. (b) Find the total translational kinetic energy of the gas. (c) Calculate the average kinetic energy per atom, (d) Use Equation 10.13 to calculate the gas pressure. (e) Calculate the gas pressure using the ideal gas law (Eq. 10.8).arrow_forwardOn a hot summer day, the density of air at atmospheric pressure at 35.0C is 1.1455 kg/m3. a. What is the number of moles contained in 1.00 m3 of an ideal gas at this temperature and pressure? b. Avogadros number of air molecules has a mass of 2.85 102 kg. What is the mass of 1.00 m3 of air? c. Does the value calculated in part (b) agree with the stated density of air at this temperature?arrow_forwardAn ideal gas is trapped inside a tube of uniform cross-sectional area sealed at one end as shown in Figure P19.49. A column of mercury separates the gas from the outside. The tube can be turned in a vertical plane. In Figure P19.49A, the column of air in the tube has length L1, whereas in Figure P19.49B, the column of air has length L2. Find an expression (in terms of the parameters given) for the length L3 of the column of air in Figure P19.49C, when the tube is inclined at an angle with respect to the vertical. FIGURE P19.49arrow_forward
- A sample of a monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K (point A in Fig. P21.65). It is warmed at constant volume to 3.00 atm (point B). Then it is allowed to expand isothermally to 1.00 atm (point C) and at last compressed isobarically to its original state, (a) Find the number of moles in the sample. Find (b) the temperature at point B, (c) the temperature at point C, and (d) the volume at point C. (e) Now consider the processes A B, B C, and C A. Describe how to carry out each process experimentally, (f) Find Q, W, and Eint for each of the processes, (g) For the whole cycle A B C A, find Q, W, and Eint.arrow_forwardA cylinder with a piston holds 0.50 m3 of oxygen at an absolute pressure of 4.0 atm. The piston is pulled outward, increasing the volume of the gas until the pressure drops to 1.0 atm. If the temperature stays constant, what new volume does the gas occupy? (a) 1.0 m3 (b) 1.5 m3 (c) 2.0 m3 (d) 0.12 m3 (e) 2.5 m3arrow_forwardA rigid, perfectly insulated container has a membrane dividing its volume in half. One side contains a gas at an absolute temperature T0 and pressure p0 , while the other half is completely empty. Suddenly a small hole develops in the membrane, allowing the gas to leak out into the other half until it eventually occupies twice its original volume. In terms of T0 and p0 , what will be the new temperature and pressure of the gas when it is distributed equally in both halves of the container? Explain your reasoning.arrow_forward
- A cylinder has a piston at one end that can be moved in or out to change the volume of gas inside. The other end is fitted with a valve. Initially the cylinder contains 2.85 mol of an ideal gas. The piston is now pushed in to decrease the volume of gas to two-fifths its initial value without causing any change in temperature. In order to keep the pressure constant as well, how many moles of gas need to be released through the valve?arrow_forward(a) A tank contains one mole of helium gas at a pressure of 6.35 atm and a temperature of 22.0°C. The tank (which has a fixed volume) is heated until the pressure inside triples. What is the final temperature of the gas? °C (b) A cylinder with a moveable piston contains one mole of helium, again at a pressure of 6.35 atm and a temperature of 22.0°C. Now, the cylinder is heated so that both the pressure inside and the volume of the cylinder double. What is the final temperature of the gas? °Carrow_forwardTwo thermally insulated vessels are connected by a narrow tube lined with a valve that is initially closed as shown in Figure P20.15. One vessel of volume 16.8 L contains oxygen at a temperature of 300 K and a pressure of 1.75 atm. The other vessel of volume 22.4 L contains oxygen at a temperature of 450 K and a pressure of 2.25 atm. When the valve is opened, the gases in the two vessels mix and the temperature and pressure become uniform throughout, (a) What is the final temperature? (b) What is the final pressure?arrow_forward
- A tank contains one mole of nitrogen gas at a pressure of 5.20 atm and a temperature of 24.5°C. The tank (which has a fixed volume) is heated until the pressure inside triples. What is the final temperature of the gas? °C (b)A cylinder with a moveable piston contains one mole of nitrogen, again at a pressure of 5.20 atm and a temperature of 24.5°C. Now, the cylinder is heated so that both the pressure inside and the volume of the cylinder double. What is the final temperature of the gas? °Carrow_forwardA high-pressure gas cylinder contains 70.0 L of toxic gas at a pressure of 1.40 x 107 N/m² and a temperature of 16.0°C. Its valve leaks after the cylinder is dropped. The cylinder is cooled to dry ice temperatures (-78.5°C), to reduce the leak rate and pressure so that it can be safely repaired. (a) What is the final pressure in the tank, assuming a negligible amount of gas leaks while being cooled and that there is no phase change? 9.42e6 N/m² (b) What is the final pressure if one-tenth of the gas escapes? 8.61e6 N/m² (c) To what temperature must the tank be cooled to reduce the pressure to 1.00 atm (assuming the gas does not change phase and that there is no leakage during cooling)? 2.14 Review the values for initial and final pressure for this situation. Karrow_forwardIf I contain 3 moles of gas in a container with a volume of 60 liters and at a temperature of 400 K, what is the pressure inside the container?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning