CALC A cylinder with a frictionless, movable piston like that shown in Fig. 19.5 contains a quantity of helium gas. Initially the gas is at 1.00 × 10 5 Pa and 300 K and occupies a volume of 1.50 L. The gas then undergoes two processes. In the first, the gas is heated and the piston is allowed to move to keep the temperature at 300 K. This continues until the pressure reaches 2.50 × 10 4 Pa. In the second process, the gas is compressed at constant pressure until it returns to its original volume of 1.50 L. Assume that the gas may be treated as ideal. (a) In a pV -diagram, show both processes. (b) Find the volume of the gas at the end of the first process, and the pressure and temperature at the end of the second process. (c) Find the total work done by the gas during both processes. (d) What would you have to do to the gas to return it to its original pressure and temperature?
CALC A cylinder with a frictionless, movable piston like that shown in Fig. 19.5 contains a quantity of helium gas. Initially the gas is at 1.00 × 10 5 Pa and 300 K and occupies a volume of 1.50 L. The gas then undergoes two processes. In the first, the gas is heated and the piston is allowed to move to keep the temperature at 300 K. This continues until the pressure reaches 2.50 × 10 4 Pa. In the second process, the gas is compressed at constant pressure until it returns to its original volume of 1.50 L. Assume that the gas may be treated as ideal. (a) In a pV -diagram, show both processes. (b) Find the volume of the gas at the end of the first process, and the pressure and temperature at the end of the second process. (c) Find the total work done by the gas during both processes. (d) What would you have to do to the gas to return it to its original pressure and temperature?
CALC A cylinder with a frictionless, movable piston like that shown in Fig. 19.5 contains a quantity of helium gas. Initially the gas is at 1.00 × 105 Pa and 300 K and occupies a volume of 1.50 L. The gas then undergoes two processes. In the first, the gas is heated and the piston is allowed to move to keep the temperature at 300 K. This continues until the pressure reaches 2.50 × 104 Pa. In the second process, the gas is compressed at constant pressure until it returns to its original volume of 1.50 L. Assume that the gas may be treated as ideal. (a) In a pV-diagram, show both processes. (b) Find the volume of the gas at the end of the first process, and the pressure and temperature at the end of the second process. (c) Find the total work done by the gas during both processes. (d) What would you have to do to the gas to return it to its original pressure and temperature?
No chatgpt pls will upvote Already got wrong chatgpt answer
An electron and a proton are each accelerated through a potential difference of 21.0 million volts. Find the momentum (in MeV/c)
and the kinetic energy (in MeV) of each, and compare with the results of using the classical formulas.
Momentum (MeV/c)
relativistic
classical
electron
proton
Kinetic Energy (MeV)
Four capacitors are connected as shown in the figure below. (Let C = 20.0 µF.)
(a) Find the equivalent capacitance between points a and b.
µF
(b) Calculate the charge on each capacitor, taking ΔVab = 14.0 V.
20.0 µF capacitor
µC
6.00 µF capacitor
µC
3.00 µF capacitor
µC
capacitor C
µC
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.