You have 1.0 M solutions of Al(NO3)3 and AgNO3 along with Al and Ag electrodes to construct a voltaic cell. The salt bridge contains a saturated solution of KCl. Complete the picture associated with this problem by
- a writing the
symbols of the elements and ions in the appropriate areas (both solutions and electrodes). - b identifying the anode and cathode.
- c indicating the direction of electron flow through the external circuit.
- d indicating the cell potential (assume standard conditions, with no current flowing).
- e writing the appropriate half-reaction under each of the containers.
- f indicating the direction of ion flow in the salt bridge.
- g identifying the species undergoing oxidation and reduction.
- h writing the balanced overall reaction for the cell.
(a)
Interpretation:
Anode, cathode, direction of electron flow, symbols of elements and ions in cell, EMF of the cell and half cell and balanced overall cell reactions should be given.
Concept introduction:
Voltaic cell:
The device, which is converting the chemical energy into electrical energy, is called voltaic cell and this conversation is takes place by the redox reaction.
The oxidation half reaction takes place in anode and reduction half reaction takes place in cathode.
From the result of this redox reaction the electron flow is form anode to cathode direction in outer circuit.
Cell potential (EMF):
The maximum potential difference between two electrodes of voltaic cell is known as cell potential.
If standard reduction potentials of electrodes are given the cell potential (EMF) is given by,
Where,
The cell potential value is positive in spontaneous cell and negative in nu in spontaneous cell.
Answer to Problem 19.32QP
The symbols of elements and ions in cell are,
Symbols of Aluminium is Al, Silver is Ag, Aluminium ion is
Explanation of Solution
The symbols of elements and ions in cell are,
Symbol of Aluminium is Al and it is an anode
Symbol of Silver is Ag and it is an cathode
Symbol of Aluminium ion is
Symbol of Silver ion is
(b)
Interpretation:
Anode, cathode, direction of electron flow, symbols of elements and ions in cell, EMF of the cell and half cell and balanced overall cell reactions should be given.
Concept introduction:
Voltaic cell:
The device, which is converting the chemical energy into electrical energy, is called voltaic cell and this conversation is takes place by the redox reaction.
The oxidation half reaction takes place in anode and reduction half reaction takes place in cathode.
From the result of this redox reaction the electron flow is form anode to cathode direction in outer circuit.
Cell potential (EMF):
The maximum potential difference between two electrodes of voltaic cell is known as cell potential.
If standard reduction potentials of electrodes are given the cell potential (EMF) is given by,
Where,
The cell potential value is positive in spontaneous cell and negative in nu in spontaneous cell.
Answer to Problem 19.32QP
Silver rod in Silver nitrate is a cathode and Aluminium rod in Aluminium nitrate is an anode.
Explanation of Solution
In given cell, Silver rod in Silver nitrate is a cathode and Aluminium rod in Aluminium nitrate is an anode.
(c)
Interpretation:
Anode, cathode, direction of electron flow, symbols of elements and ions in cell, EMF of the cell and half cell and balanced overall cell reactions should be given.
Concept introduction:
Voltaic cell:
The device, which is converting the chemical energy into electrical energy, is called voltaic cell and this conversation is takes place by the redox reaction.
The oxidation half reaction takes place in anode and reduction half reaction takes place in cathode.
From the result of this redox reaction the electron flow is form anode to cathode direction in outer circuit.
Cell potential (EMF):
The maximum potential difference between two electrodes of voltaic cell is known as cell potential.
If standard reduction potentials of electrodes are given the cell potential (EMF) is given by,
Where,
The cell potential value is positive in spontaneous cell and negative in nu in spontaneous cell.
Answer to Problem 19.32QP
Figure 1
Explanation of Solution
(d)
Interpretation:
Anode, cathode, direction of electron flow, symbols of elements and ions in cell, EMF of the cell and half cell and balanced overall cell reactions should be given.
Concept introduction:
Voltaic cell:
The device, which is converting the chemical energy into electrical energy, is called voltaic cell and this conversation is takes place by the redox reaction.
The oxidation half reaction takes place in anode and reduction half reaction takes place in cathode.
From the result of this redox reaction the electron flow is form anode to cathode direction in outer circuit.
Cell potential (EMF):
The maximum potential difference between two electrodes of voltaic cell is known as cell potential.
If standard reduction potentials of electrodes are given the cell potential (EMF) is given by,
Where,
The cell potential value is positive in spontaneous cell and negative in nu in spontaneous cell.
Answer to Problem 19.32QP
The cell potential (EMF) of given voltaic cell is
Explanation of Solution
The standard reduction potentials of (SRQ) of half cell reactions are record from standard reduction potentials table and they are,
The most positive SQR is considering as cathode potential.
The SQR of electrodes are plugged in the bellow equation to give cell potential of given voltaic cell.
The cell potential (EMF) of given voltaic cell is
(e)
Interpretation:
Anode, cathode, direction of electron flow, symbols of elements and ions in cell, EMF of the cell and half cell and balanced overall cell reactions should be given.
Concept introduction:
Voltaic cell:
The device, which is converting the chemical energy into electrical energy, is called voltaic cell and this conversation is takes place by the redox reaction.
The oxidation half reaction takes place in anode and reduction half reaction takes place in cathode.
From the result of this redox reaction the electron flow is form anode to cathode direction in outer circuit.
Cell potential (EMF):
The maximum potential difference between two electrodes of voltaic cell is known as cell potential.
If standard reduction potentials of electrodes are given the cell potential (EMF) is given by,
Where,
The cell potential value is positive in spontaneous cell and negative in nu in spontaneous cell.
Answer to Problem 19.32QP
The Oxidation half cell reaction is,
The reduction half cell reaction is,
Explanation of Solution
The Oxidation half cell reaction is,
The reduction half cell reaction is,
(f)
Interpretation:
Anode, cathode, direction of electron flow, symbols of elements and ions in cell, EMF of the cell and half cell and balanced overall cell reactions should be given.
Concept introduction:
Voltaic cell:
The device, which is converting the chemical energy into electrical energy, is called voltaic cell and this conversation is takes place by the redox reaction.
The oxidation half reaction takes place in anode and reduction half reaction takes place in cathode.
From the result of this redox reaction the electron flow is form anode to cathode direction in outer circuit.
Cell potential (EMF):
The maximum potential difference between two electrodes of voltaic cell is known as cell potential.
If standard reduction potentials of electrodes are given the cell potential (EMF) is given by,
Where,
The cell potential value is positive in spontaneous cell and negative in nu in spontaneous cell.
Answer to Problem 19.32QP
Explanation of Solution
Figure 1
(g)
Interpretation:
Anode, cathode, direction of electron flow, symbols of elements and ions in cell, EMF of the cell and half cell and balanced overall cell reactions should be given.
Concept introduction:
Voltaic cell:
The device, which is converting the chemical energy into electrical energy, is called voltaic cell and this conversation is takes place by the redox reaction.
The oxidation half reaction takes place in anode and reduction half reaction takes place in cathode.
From the result of this redox reaction the electron flow is form anode to cathode direction in outer circuit.
Cell potential (EMF):
The maximum potential difference between two electrodes of voltaic cell is known as cell potential.
If standard reduction potentials of electrodes are given the cell potential (EMF) is given by,
Where,
The cell potential value is positive in spontaneous cell and negative in nu in spontaneous cell.
Answer to Problem 19.32QP
Explanation of Solution
The Oxidation half cell reaction is,
The reduction half cell reaction is,
Hence,
(h)
Interpretation:
Anode, cathode, direction of electron flow, symbols of elements and ions in cell, EMF of the cell and half cell and balanced overall cell reactions should be given.
Concept introduction:
Voltaic cell:
The device, which is converting the chemical energy into electrical energy, is called voltaic cell and this conversation is takes place by the redox reaction.
The oxidation half reaction takes place in anode and reduction half reaction takes place in cathode.
From the result of this redox reaction the electron flow is form anode to cathode direction in outer circuit.
Cell potential (EMF):
The maximum potential difference between two electrodes of voltaic cell is known as cell potential.
If standard reduction potentials of electrodes are given the cell potential (EMF) is given by,
Where,
The cell potential value is positive in spontaneous cell and negative in nu in spontaneous cell.
Answer to Problem 19.32QP
The balanced overall cell reaction is,
Explanation of Solution
The Oxidation half cell reaction is,
The reduction half cell reaction is,
To sum the two half cell reactions and remove a electron to give a balanced overall cell reaction.
The balanced overall cell reaction is,
Want to see more full solutions like this?
Chapter 19 Solutions
OWLv2 with Student Solutions Manual eBook for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 4 terms (24 months)
- 3B: Convert the starting material into the chiral epoxytriol below. OH OH = OH OHarrow_forward3D: Convert the aromatic triketone to the 1,3,5-triethylcyclohexane shown below. ہوئےarrow_forwardIndicate how to find the energy difference between two levels in cm-1, knowing that its value is 2.5x10-25 joules.arrow_forward
- The gyromagnetic ratio (gamma) for 1H is 2.675x108 s-1 T-1. If the applied field is 1,409 T what will be the separation between nuclear energy levels?arrow_forwardChances Ad ~stract one 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 • 6H total $4th total Statistical pro 21 total 2 H A 2H 래 • 4H totul < 3°C-H werkest bund - abstraction he leads to then mo fac a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? рос 6 -વા J Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Clarrow_forwardWhat is the lone pair or charge that surrounds the nitrogen here to give it that negative charge?arrow_forward
- Last Name, Firs Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 • 6H total $ 4th total 21 total 4H total ZH 2H Statistical H < 3°C-H werkst - product bund abstraction here leads to the mo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Proclict 6 Number of Unique Mono-Chlorinated Products f Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary 'H H-Cl Waterfoxarrow_forward2. (a) Many main group oxides form acidic solutions when added to water. For example solid tetraphosphorous decaoxide reacts with water to produce phosphoric acid. Write a balanced chemical equation for this reaction. (b) Calcium phosphate reacts with silicon dioxide and carbon graphite at elevated temperatures to produce white phosphorous (P4) as a gas along with calcium silicate (Silcate ion is SiO3²-) and carbon monoxide. Write a balanced chemical equation for this reaction.arrow_forwardI find the solution way too brief and unsatisfactory as it does not clearly explain the solution provided in the problem.arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardthis is an organic chemistry question please answer accordindly!! please post the solution in your hand writing not an AI generated answer please draw the figures and structures if needed to support your explanation hand drawn only!!!! answer the question in a very simple and straight forward manner thanks!!!!! im reposting this please solve all parts and draw it not just word explanations!!arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning