Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 19, Problem 19.2PP
Repeat Problem 19.1 O for duct diameters of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Using velocity reduction method, design the duct system. Take the velocity of air in main duct as 8m/sec, air density 1.2kg/m. Coranch = 0.4 Coutlet = 1 2. Using equal pressure drop method, design the duct system. Take Ap = 1pa/m, air density 1.2kg \m. Cranch = 0.4 Coutlet = 1
Find the loss in total pressure for each run in the simple duct system of Fig. 1, using the
equal-friction method and in English unit. The total pressure available for the duct system
is 0.12 in. wg (30 Pa), and the loss in total pressure for each diffuser at the specified flow
rate is 0.02 in. wg (5 Pa). Duct fittings are listed in Table 1. Assume the duct dimeter in
run 1 is 10 in. and the rest are 8 in. Does the duct system require any adjustment?
150 cfm
e.
a
15 ft
Plenum
е
15 ft
5 ft
5 ft
a
3.
20 ft
4
10 ft
200 cfm
e
10 ft
150 cfm
b
Duct Fittings for Figure 1
Fittings Type
Abrupt Entrance
90 deg Elbow, Pleated
Round to Rectangular boot, Straight
45 deg. Converging Wye
45 deg Elbow, Pleated
a
d
e
A Forced - Draft (FDF) with open suction has rated capacity of 4,000 CFM at 1,800 rpm. The pressure developed at the discharged duct is 10 mm H2O. The discharge duct is circular with inside diameter of 600 mm. Calculate the following:a) what is the velocity of air at the discharge in mm H2O?b) what is the theoretical fan power required in kW?Consider standard density of water and air are 1000 kg/m3 and 1.20 kg/m
Chapter 19 Solutions
Applied Fluid Mechanics (7th Edition)
Ch. 19 - Determine the velocity of flow and the friction...Ch. 19 - Repeat Problem 19.1 O for duct diameters of 16,...Ch. 19 - Prob. 19.3PPCh. 19 - Determine the velocity of flow and the friction...Ch. 19 - Repeat Problem 19.40 for duct diameters of...Ch. 19 - Prob. 19.6PPCh. 19 - Prob. 19.7PPCh. 19 - '19.8 A branch duct for a heating system measures...Ch. 19 - Prob. 19.9PPCh. 19 - Prob. 19.10PP
Ch. 19 - A branch duct for a heating system measures 75250...Ch. 19 - Prob. 19.12PPCh. 19 - Prob. 19.13PPCh. 19 - Prob. 19.14PPCh. 19 - Repeat Problem 19.14, but use a five-piece elbowCh. 19 - Prob. 19.16PPCh. 19 - Prob. 19.17PPCh. 19 - Prob. 19.18PPCh. 19 - Prob. 19.19PPCh. 19 - Prob. 19.20PPCh. 19 - Compute the pressure drop as 0.20m3/s of air flows...Ch. 19 - Prob. 19.22PPCh. 19 - Compute the pressure drop as 0.85m3/s of air flows...Ch. 19 - A section of duct system consists of 42 ft of...Ch. 19 - A section of duct system consists of 38 ft of...Ch. 19 - The intake duct to a fan consists of intake...Ch. 19 - Forthe conditions shown in figs. 19.719- 19.10 0,...Ch. 19 - Forthe conditions shown in figs. 19.719- 19.10 0,...Ch. 19 - Prob. 19.29PPCh. 19 - Forthe conditions shown in figs. 19.719- 19.10 0,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please help me with this problem, Thank youarrow_forwardWater at 40°F is flowing downward through the fabri- cated reducer shown in Fig. 7.11. At point A the velocity is 10 ft/s and the pressure is 60 psig. The energy loss be tween points A and B is 25 lb-ft/lb. Calculate the pressure at point B.arrow_forwardExample 1: A pipe 1 m diameter and 15 km long transmits water of velocity of 1 m/sec. The friction coefficient of pipe is 0.005. Calculate the head loss due to friction?arrow_forward
- . What horsepower is supplied to air moving at 7m/min through a 70cmx90cm duct under a pressure of8cm of H2O?arrow_forwarda pipe reducer with the pressure at A and B is 345kPa and 290kPa. the diameter at A and B is 50mm and 25mm. estimate the total head at point A and B?arrow_forwardDiagram (1) H(m) 40 36 32 28 24 20 16 12 4 200 400 600 800 1000 1200 1400 1600 1800 V(lit/min)arrow_forward
- 20. A centrifugal pump has an impeller 45 cms in diameter running at 450 rpm. The discharge at inlet is entirely radial. The velocity of flow at outlet is 1-2 m/sec. The vanes are curved back- wards at outlet at 30 to the wheel tangent. If the discharge of the pump is 015 cumeo calculate the impeller horse power and the torque on the shaft. (18-42 hp; 29-31 kgm)arrow_forwardDon't use chatgpt. I need right answer.arrow_forwardA Pelton wheel has to develop 18000 B.H.P under a net head of 800 m, while running at a speed of 600 rpm. If the coefficient of the jet=0.97, speed ratio= 0.46 and the ratio of the jet diameter is 1/15 of wheel diameter, assume overall efficiency as 85%. calculate the quantity of water supplied to the wheel.arrow_forward
- Badly needed Asap.. .I will rate helpful.arrow_forwardA pitot-static tube is used to measure the velocity of water in a pipe. The stagnation pressure head is 6 m and static pressure head is 5 m. Calculate the velocity of flow assuming the co- efficient of tube equal to 0.98.arrow_forwardThe below figure shows a pump that transfers a steady stream of 35 API crude oil from an oil tanker to a refinery storage tank, both free surfaces being open to the atmosphere. The effective length-including fittings-of the commercial steel pipe is 6,000 ft. The discharge at point 4 is 200 ft above the pump exit, which is level with the free surface of oil in the tanker. However, because of an intervening hill, point 3 is at a higher altitude than point 4. Losses between points 1 and 2 may be ignored. The crude oil has the following properties: Density p = 53 lbm/ft3; Viscosity u = 13.2 cP; Vapour Pressure Pv = 4.0 psia 1,000 ft 5,000 ft Storage tank 200 ft Oil tankerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamic Availability, What is?; Author: MechanicaLEi;https://www.youtube.com/watch?v=-04oxjgS99w;License: Standard Youtube License