Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 19.16PP
To determine
Pressure drop for the duct.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a. Solve for the two (2) atmospheric condition, Pn1 & Pn2 at 32.68 0C and 41.12 °C.
b. Calculate the diameter of the pipe at suction side if the velocity of air flow is 22.82 m/s with flow rate of 2.96 m³ /second.
c. Compute the velocity head at suction side if the velocity is 33.68 m/sec.
Find the loss in total pressure for each run in the simple duct system of Fig. 1, using the
equal-friction method and in English unit. The total pressure available for the duct system
is 0.12 in. wg (30 Pa), and the loss in total pressure for each diffuser at the specified flow
rate is 0.02 in. wg (5 Pa). Duct fittings are listed in Table 1. Assume the duct dimeter in
run 1 is 10 in. and the rest are 8 in. Does the duct system require any adjustment?
150 cfm
e.
a
15 ft
Plenum
е
15 ft
5 ft
5 ft
a
3.
20 ft
4
10 ft
200 cfm
e
10 ft
150 cfm
b
Duct Fittings for Figure 1
Fittings Type
Abrupt Entrance
90 deg Elbow, Pleated
Round to Rectangular boot, Straight
45 deg. Converging Wye
45 deg Elbow, Pleated
a
d
e
A duct system layout is shown in the figure below, it is supplied with air from a
central air conditioning unit. The ducts require to be rectangular with a
maximum height of 10in due to ceiling limitations. Maximum air duct velocities
are: main = 1200fpm; branches = 800 fpm. Determine the sizes of the
rectangular ducts and the static pressure at the AHU. Use Velocity reduction
method.
AHU- AIR HANDLING UNIT (CENTRAL AIRCON)
Chapter 19 Solutions
Applied Fluid Mechanics (7th Edition)
Ch. 19 - Determine the velocity of flow and the friction...Ch. 19 - Repeat Problem 19.1 O for duct diameters of 16,...Ch. 19 - Prob. 19.3PPCh. 19 - Determine the velocity of flow and the friction...Ch. 19 - Repeat Problem 19.40 for duct diameters of...Ch. 19 - Prob. 19.6PPCh. 19 - Prob. 19.7PPCh. 19 - '19.8 A branch duct for a heating system measures...Ch. 19 - Prob. 19.9PPCh. 19 - Prob. 19.10PP
Ch. 19 - A branch duct for a heating system measures 75250...Ch. 19 - Prob. 19.12PPCh. 19 - Prob. 19.13PPCh. 19 - Prob. 19.14PPCh. 19 - Repeat Problem 19.14, but use a five-piece elbowCh. 19 - Prob. 19.16PPCh. 19 - Prob. 19.17PPCh. 19 - Prob. 19.18PPCh. 19 - Prob. 19.19PPCh. 19 - Prob. 19.20PPCh. 19 - Compute the pressure drop as 0.20m3/s of air flows...Ch. 19 - Prob. 19.22PPCh. 19 - Compute the pressure drop as 0.85m3/s of air flows...Ch. 19 - A section of duct system consists of 42 ft of...Ch. 19 - A section of duct system consists of 38 ft of...Ch. 19 - The intake duct to a fan consists of intake...Ch. 19 - Forthe conditions shown in figs. 19.719- 19.10 0,...Ch. 19 - Forthe conditions shown in figs. 19.719- 19.10 0,...Ch. 19 - Prob. 19.29PPCh. 19 - Forthe conditions shown in figs. 19.719- 19.10 0,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A piping system is to be installed at place where the pump will transfer the fluid from tank A to tank B. There are two suggested piping designs available to carry the fluid efficiently. Compute and determine which of the available piping arrangement will experience the less pumping powerwith given flow conditions. Discuss the results. Flow conditions are same for both type of designs and given as: Pipe material: stainless steel Volume flow rate: 40 L/sec Assume the working fluid is water at standard atmosphere temperature and both tanks areopen to atmosphere. Pipe inlet is sharp-edged and bends are sharped without vanes. Elevations are as ?? = ?? ? and ?? = ?? ?arrow_forwardA round main supply duct will carry an airflow of 2,000 CFM with a static pressure drop of 0.325” w.c. What size duct diameter will each branch be?arrow_forwardDon't use chatgpt. I need right answer.arrow_forward
- What is the hydraulic radius of a rectangular air duct 300mm by 500mm?arrow_forwardQ: Design the duct system by using velocity reduction method and find FTP and the amount of dampering required. Assume a dynamic loss coefficient of 0.3 for downstream and 0.5 for upstream to branch and for the elbow. The dynamic loss coefficients for the outlets may be taken as 1.0. 1m'/s 10 m 2 m /s 30 m 9 m/s FAN 30 m 45 m 10 m 1m /sarrow_forwardUsing velocity reduction method, design the duct system. Take the velocity of air in main duct as 8m/sec, air density 1.2kg/m. Coranch = 0.4 Coutlet = 1 2. Using equal pressure drop method, design the duct system. Take Ap = 1pa/m, air density 1.2kg \m. Cranch = 0.4 Coutlet = 1arrow_forward
- Solve the following problem. View image. Give complete and detailed solutions. Given: Asked: Solution: Please write legibly.arrow_forwarda. The total dynamic head in ft. b. the distance bet the discharge and the suction gage in ft. c. the pump specific speed in rpmarrow_forwardA perfect venture with throat diameter of 1.8 inches is placed horizontally in a pipe with a 5 in inside diameter. 80 lb of water flow through the pipe each second. What is the difference between the pipe and venture throat static pressure?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license