Applied Fluid Mechanics (7th Edition)
Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 19, Problem 19.16PP
To determine

Pressure drop for the duct.

Blurred answer
Students have asked these similar questions
a. Solve for the two (2) atmospheric condition, Pn1 & Pn2 at 32.68 0C and 41.12 °C. b. Calculate the diameter of the pipe at suction side if the velocity of air flow is 22.82 m/s with flow rate of 2.96 m³ /second. c. Compute the velocity head at suction side if the velocity is 33.68 m/sec.
Find the loss in total pressure for each run in the simple duct system of Fig. 1, using the equal-friction method and in English unit. The total pressure available for the duct system is 0.12 in. wg (30 Pa), and the loss in total pressure for each diffuser at the specified flow rate is 0.02 in. wg (5 Pa). Duct fittings are listed in Table 1. Assume the duct dimeter in run 1 is 10 in. and the rest are 8 in. Does the duct system require any adjustment? 150 cfm e. a 15 ft Plenum е 15 ft 5 ft 5 ft a 3. 20 ft 4 10 ft 200 cfm e 10 ft 150 cfm b Duct Fittings for Figure 1 Fittings Type Abrupt Entrance 90 deg Elbow, Pleated Round to Rectangular boot, Straight 45 deg. Converging Wye 45 deg Elbow, Pleated a d e
A duct system layout is shown in the figure below, it is supplied with air from a central air conditioning unit. The ducts require to be rectangular with a maximum height of 10in due to ceiling limitations. Maximum air duct velocities are: main = 1200fpm; branches = 800 fpm. Determine the sizes of the rectangular ducts and the static pressure at the AHU. Use Velocity reduction method. AHU- AIR HANDLING UNIT (CENTRAL AIRCON)
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license