Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 19, Problem 19.29PP
To determine
The pressure at the fan inlet.
The pressure at the fan outlet.
Complete the duct design.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Find the loss in total pressure for each run in the simple duct system of Fig. 1, using the
equal-friction method and in English unit. The total pressure available for the duct system
is 0.12 in. wg (30 Pa), and the loss in total pressure for each diffuser at the specified flow
rate is 0.02 in. wg (5 Pa). Duct fittings are listed in Table 1. Assume the duct dimeter in
run 1 is 10 in. and the rest are 8 in. Does the duct system require any adjustment?
150 cfm
e.
a
15 ft
Plenum
е
15 ft
5 ft
5 ft
a
3.
20 ft
4
10 ft
200 cfm
e
10 ft
150 cfm
b
Duct Fittings for Figure 1
Fittings Type
Abrupt Entrance
90 deg Elbow, Pleated
Round to Rectangular boot, Straight
45 deg. Converging Wye
45 deg Elbow, Pleated
a
d
e
Give the isometric configuration of the typical piping system of a pump installation using standard
symbols for required valves and fittings. Draw according to valid practice and label the parts.
What is the minimum duct size needed to move 200 cu ft per minute andmaintain duct velocity below 800 feet per minute?
Chapter 19 Solutions
Applied Fluid Mechanics (7th Edition)
Ch. 19 - Determine the velocity of flow and the friction...Ch. 19 - Repeat Problem 19.1 O for duct diameters of 16,...Ch. 19 - Prob. 19.3PPCh. 19 - Determine the velocity of flow and the friction...Ch. 19 - Repeat Problem 19.40 for duct diameters of...Ch. 19 - Prob. 19.6PPCh. 19 - Prob. 19.7PPCh. 19 - '19.8 A branch duct for a heating system measures...Ch. 19 - Prob. 19.9PPCh. 19 - Prob. 19.10PP
Ch. 19 - A branch duct for a heating system measures 75250...Ch. 19 - Prob. 19.12PPCh. 19 - Prob. 19.13PPCh. 19 - Prob. 19.14PPCh. 19 - Repeat Problem 19.14, but use a five-piece elbowCh. 19 - Prob. 19.16PPCh. 19 - Prob. 19.17PPCh. 19 - Prob. 19.18PPCh. 19 - Prob. 19.19PPCh. 19 - Prob. 19.20PPCh. 19 - Compute the pressure drop as 0.20m3/s of air flows...Ch. 19 - Prob. 19.22PPCh. 19 - Compute the pressure drop as 0.85m3/s of air flows...Ch. 19 - A section of duct system consists of 42 ft of...Ch. 19 - A section of duct system consists of 38 ft of...Ch. 19 - The intake duct to a fan consists of intake...Ch. 19 - Forthe conditions shown in figs. 19.719- 19.10 0,...Ch. 19 - Forthe conditions shown in figs. 19.719- 19.10 0,...Ch. 19 - Prob. 19.29PPCh. 19 - Forthe conditions shown in figs. 19.719- 19.10 0,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Refrigeration and Air Conditioning Engineering Dept. 3rd year - refrigeration and Air Conditioning Course UNIVERSITY OF WARITH AL-ANBIA Asst. Ihab Omar 1.Using velocity reduction method, design the duct system. Take the velocity of air in main duct as 8m/sec, air density 1.2kg/m. Cbranch = 0.4 Coutlet = 1 2.Using equal pressure drop method, design the duct system. Take Дp 1pa/m, air density 1.2kg\m³. Cbranch = 0.4 Coutlet = 1 1.5 m/s 1.5 mls 1.5 m /s 1.5 m'/s A 7.5 m/s 6 m/s C 4.5 m'/s 3 m /s B. E -10 m 10m. 10 m- 10 m- A.C. system F 17arrow_forwardA "spa tub" is to be designed to replace bath tubs in reno- vations. There are to be 6 outlet nozzles, each with a di- ameter of 12 mm, and each should have an outlet velocity of 12 m/s. What is the required flow rate from the single pump that supplies all of these nozzles? If there is one suction line leading to the pump, what is the minimum diameter to limit the velocity at the inlet of the pump to 2.5 m/s?arrow_forwardplease do both 1.A liquid refrigerant (sg = 1.080) is flowing at a weight flow rate of 23.0 N/h. Required Calculate the mass flow rate in kg/s. (Note: Answer will be small, include 3 digits after at end of leading 0's). 2.When 2600 L/min of water flows through a circular section with an inside diameter of 275 mm that later reduces to a 155 mm diameter. Required Calculate the average velocity of flow in the larger section, to the nearest 1000th.arrow_forward
- a. Solve for the two (2) atmospheric condition, Pn1 & Pn2 at 32.68 0C and 41.12 °C. b. Calculate the diameter of the pipe at suction side if the velocity of air flow is 22.82 m/s with flow rate of 2.96 m³ /second. c. Compute the velocity head at suction side if the velocity is 33.68 m/sec.arrow_forwardCompare a orifice plate for low speed to a Pitot Static Tube.arrow_forwardA duct system layout is shown in the figure below, it is supplied with air from a central air conditioning unit. The ducts require to be rectangular with a maximum height of 10in due to ceiling limitations. Maximum air duct velocities are: main = 1200fpm; branches = 800 fpm. Determine the sizes of the rectangular ducts and the static pressure at the AHU. Use Velocity reduction method. AHU- AIR HANDLING UNIT (CENTRAL AIRCON)arrow_forward
- Don't use chatgpt. I need right answer.arrow_forwardWater at 5°C is to be pumped from the river to the bottom of a water tower. The pump is 5 m above the river (dimension "a" on the diagram below) and is supplied by a 6.00 inch schedule 40 pipe. The tank is 19.5 m above the pump (dimension "b" on the diagram below) and is supplied by a 4 inch schedule 40 pipe. The water level in the tank is 4.3 m above the inlet (dimension "c" on the diagram below). The pump delivers 0.021 m/s. Losses are estimated to be 1.2 m between the river and the pump, and 4.2 m between the pump and the tank. Discharge line Suction line Pump River a) Calculate the losses in the suction line in kPa, based on the given head loss in m. kPa b) Calculate velocity in the suction line in m/s. m/s c) What is the pressure at the inlet to the pump in kPa? kPaarrow_forwardI need the answer as soon as possiblearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License