(a)
Interpretation:
The equilibrium constant and Gibb’s free energy for the following cell reaction has to be calculated.
Concept introduction:
Standard reduction potential: The voltage associated with a reduction reaction at an electrode when all solutes are 1M and all gases are at 1 atm. The hydrogen electrode is called the standard hydrogen electrode (SHE).
Standard emf: Eocell is composed of a contribution from the anode and a contribution from the cathode is given by,
Where both
The change in free-energy represents the maximum amount of useful work that can be obtained in a reaction:
Relation between
Relation between
(a)

Explanation of Solution
The given reaction is,
Lead ion is reduced and Magnesium is oxidized; hence oxidation occurs at anode electrode and reduction occurs at cathode electrode.
Calculation of Standard emf:
The standard reduction potential of Mg (+2) as follows,
The standard reduction potential of Pb (+2) as follows,
Calculated standard emf for galvanic cell as follows,
Therefore, Standard emf of a galvanic cell is
Equilibrium constant calculation:
Using Gibb’s free energy equation as follows,
Using equation as follows,
Therefore, the equilibrium constant obtained is
(b)
Interpretation:
The equilibrium constant and Gibb’s free energy for the following cell reaction has to be calculated.
Concept introduction:
Standard reduction potential: The voltage associated with a reduction reaction at an electrode when all solutes are 1M and all gases are at 1 atm. The hydrogen electrode is called the standard hydrogen electrode (SHE).
Standard emf: Eocell is composed of a contribution from the anode and a contribution from the cathode is given by,
Where both
Thermodynamics of redox reactions:
The change in free-energy represents the maximum amount of useful work that can be obtained in a reaction:
Relation between
Relation between
(b)

Explanation of Solution
The given reaction is,
Bromium is reduced and Iodide ion is oxidized; hence oxidation occurs at anode electrode and reduction occurs at cathode electrode.
Calculation of Standard emf:
The standard reduction potential of Br (-1) as follows,
The standard reduction potential of Iodide ion as follows,
Calculated standard emf for galvanic cell as follows,
Therefore, Standard emf of a galvanic cell is
Equilibrium constant calculation:
Using Gibb’s free energy equation as follows,
Using equation as follows,
Therefore, the equilibrium constant obtained is
c)
Interpretation:
The equilibrium constant and Gibb’s free energy for the following cell reaction has to be calculated.
Concept introduction:
Standard reduction potential: The voltage associated with a reduction reaction at an electrode when all solutes are 1M and all gases are at 1 atm. The hydrogen electrode is called the standard hydrogen electrode (SHE).
Standard emf: Eocell is composed of a contribution from the anode and a contribution from the cathode is given by,
Where both
Thermodynamics of redox reactions:
The change in free-energy represents the maximum amount of useful work that can be obtained in a reaction:
Relation between
Relation between
c)

Explanation of Solution
The given reaction is,
Oxygen and proton are reduced and Iron ion is oxidized; hence oxidation occurs at anode electrode and reduction occurs at cathode electrode.
Calculation of Standard emf:
The standard reduction potential of Oxygen as follows,
The standard reduction potential of Iron ion as follows,
Calculated standard emf for galvanic cell as follows,
Reversing half-reaction changes the sign of
Therefore, Standard emf of a galvanic cell is
Equilibrium constant calculation:
Using Gibb’s free energy equation as follows,
Using equation as follows,
Therefore, the equilibrium constant obtained is
d)
Interpretation:
The equilibrium constant and Gibb’s free energy for the following cell reaction has to be calculated.
Concept introduction:
Standard reduction potential: The voltage associated with a reduction reaction at an electrode when all solutes are 1M and all gases are at 1 atm. The hydrogen electrode is called the standard hydrogen electrode (SHE).
Standard emf: Eocell is composed of a contribution from the anode and a contribution from the cathode is given by,
Where both
Thermodynamics of redox reactions:
The change in free-energy represents the maximum amount of useful work that can be obtained in a reaction:
Relation between
Relation between
d)

Explanation of Solution
The given reaction is,
Iodine is reduced and Aluminum is oxidized; hence oxidation occurs at anode electrode and reduction occurs at cathode electrode.
Calculation of Standard emf:
The standard reduction potential of Al (+3) as follows,
The standard reduction potential of Iodide ion as follows,
Calculated standard emf for galvanic cell as follows,
Reversing oxidation half-reaction changes the sign
Therefore, Standard emf of a galvanic cell is
Equilibrium constant calculation:
Using Gibb’s free energy equation as follows,
Using equation as follows,
Therefore, the equilibrium constant obtained is
Want to see more full solutions like this?
Chapter 19 Solutions
EBK GENERAL CHEMISTRY: THE ESSENTIAL CO
- Identify the compound with the longest carbon - nitrogen bond. O CH3CH2CH=NH O CH3CH2NH2 CH3CH2C=N CH3CH=NCH 3 The length of all the carbon-nitrogen bonds are the samearrow_forwardIdentify any polar covalent bonds in epichlorohydrin with S+ and 8- symbols in the appropriate locations. Choose the correct answer below. Η H's+ 6Η Η Η Η Η Ηδ Η Ο Ο HH +Η Η +Η Η Η -8+ CIarrow_forwardH H:O::::H H H HH H::O:D:D:H HH HH H:O:D:D:H .. HH H:O:D:D:H H H Select the correct Lewis dot structure for the following compound: CH3CH2OHarrow_forward
- Rank the following compounds in order of decreasing boiling point. ннннн -С-С-Н . н-с- ННННН H ΗΤΗ НННН TTTĪ н-с-с-с-с-о-н НННН НН C' Н н-с-с-с-с-н НН || Ш НННН H-C-C-C-C-N-H ННННН IVarrow_forwardRank the following compounds in order of decreasing dipole moment. |>||>||| ||>|||>| |>|||>|| |||>||>| O ||>>||| H F H F H c=c || H c=c F F IIIarrow_forwardchoose the description that best describes the geometry for the following charged species ch3-arrow_forward
- Why isn't the ketone in this compound converted to an acetal or hemiacetal by the alcohol and acid?arrow_forwardWhat is the approximate bond angle around the nitrogen atom? HNH H Harrow_forwardOH 1. NaOCH2CH3 Q 2. CH3CH2Br (1 equiv) H3O+ Select to Draw 1. NaOCH2 CH3 2. CH3Br (1 equiv) heat Select to Edit Select to Drawarrow_forward
- Complete and balance the following half-reaction in acidic solution. Be sure to include the proper phases for all species within the reaction. S₂O₃²⁻(aq) → S₄O₆²⁻(aq)arrow_forwardQ Select to Edit NH3 (CH3)2CHCI (1 equiv) AICI 3 Select to Draw cat. H2SO4 SO3 (1 equiv) HO SOCl2 pyridine Select to Edit >arrow_forwardComplete and balance the following half-reaction in basic solution. Be sure to include the proper phases for all species within the reaction. Zn(s) → Zn(OH)₄²⁻(aq)arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





