(a)
Interpretation:
The cell potential (EMF) of given cell should be calculated at standard conditions by using Nernst equation.
Concept introduction:
Cell potential (EMF):
The maximum potential difference between two electrodes of voltaic cell is known as cell potential.
If standard reduction potentials of electrodes are given the cell potential (EMF) is given by,
Where,
Nernst equation:
The relationship between standard cell potential and cell potential at non standard conditions and the reaction quotient are given by Nernst equation it is,
Where,
(a)
Answer to Problem 19.146QP
The cell potential (EMF) of given voltaic cell is
Explanation of Solution
To calculate the cell potential (EMF) of given cell
The standard reduction potentials of (SRP) of Zinc and Silver are record from standard reduction potentials table and they are,
The most positive SQR is considering as cathode potential.
The SRP of electrodes are plugged in the bellow equation to give cell potential of given voltaic cell.
The cell potential (EMF) of given voltaic cell is
To calculate the cell potential (EMF) of given cell
Given:
Mass of
Mass of
Final volume of
Final volume of
To calculate the concentrations of
Molar mass of
Molar mass of
Taken mass and molar mass of
In this cell reaction, number of electrons transferred are 2
Faraday constant is
The calculated standard cell potential (EMF) of given voltaic cell, number of electron transferred in cell reaction, Faraday constant and calculated concentrations of ions are plugged in the above equation to give a cell potential (EMF) of given cell at non standard conditions.
The cell potential (EMF) of given cell at non-standard conditions is
The cell potential (EMF) of given cell was calculated at standard condition by using Nernst equation and it was found to be
(b)
Interpretation:
The free energy change of given voltaic cell should be calculated by using standard reduction potentials and cell potential of the cell should be explained, when doing given operations to the cell.
Concept introduction:
Free energy change:
In
Where,
(b)
Answer to Problem 19.146QP
Solution:
The free energy change of voltaic cell is
Explanation of Solution
To calculate the free energy change of given cell:
In this cell reaction number of electron transferred are 2
Faraday constant is
The calculated cell potential (EMF) of given voltaic cell and number of electron transferred in cell reaction and Faraday constant are plugged in the above equation to give a free energy change of given cell.
The free energy change of given cell reaction is
(c)
Interpretation:
The cell potential (EMF) of given cell should be explained in terms of concentration of
Concept introduction:
Nernst equation:
The relationship between standard cell potential and cell potential at standard conditions and the reaction quotient are given by Nernst equation it is,
Where,
(c)
Answer to Problem 19.146QP
The concentration of
Explanation of Solution
According to the Nernst equation, the concentration of makes changes in cell potential but in addition of
Hence, the concentration of
(d)
Interpretation:
The cell potential (EMF) of given cell should be explained in terms of electrode concentration.
Concept introduction:
Nernst equation:
The relationship between standard cell potential and cell potential at standard conditions and the reaction quotient are given by Nernst equation it is,
Where,
(d)
Answer to Problem 19.146QP
The cell potential would not affected by increasing mass of zinc electrode.
Explanation of Solution
The cell potential does not depended on mass of electrodes in voltaic cell.
Hence, the cell potential would not affected by increasing mass of zinc electrode.
(e)
Interpretation:
The cell potential (EMF) of given cell should be explained, when the addition of
Concept introduction:
Nernst equation:
The relationship between standard cell potential and cell potential at standard conditions and the reaction quotient are given by Nernst equation it is,
Where,
(e)
Answer to Problem 19.146QP
The addition of
Explanation of Solution
According to the Nernst equation, the addition of
Want to see more full solutions like this?
Chapter 19 Solutions
Bundle: General Chemistry, Loose-leaf Version, 11th + OWLv2, 4 terms (24 months) Printed Access Card
- Don't used hand raitingarrow_forward1.) Using the graph below (including the line equation of y = -1.823x - 0.0162) What is the numerical value for the slope shown? 2.) What are the Unit(s) associated with the slope of the line shown? for we all remember that numerical data always has units. 3.) What would be a good title for this graph and explain your choice. 0.00 0.0 02 0.4 10.6 08 10 12 -0.20 -0.40 -0.60 -0.80 Temp, freezing, in degrees Celcius 5-1.00 -1.20 -1.40 -1:60 y=-1.823x-0.0162 -180 -2.00 Concentration of Sucrose (m)arrow_forwardDon't used Ai solutionarrow_forward
- Identify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling. Please label in the image, so it fits explanation. I am still very unsure I undertand this.arrow_forwardDon't used Ai solutionarrow_forwardDon't used Ai solutionarrow_forward
- 3. Devise a retrosynthesis for the problem given below and then provide the corresponding synthesis with all necessary reagents/reactants: RETROSYNTHESIS: SYNTHESIS: Brarrow_forwardSeveral square planar complexes are known for Gold (III) ions but not for Silver (III) why?arrow_forwardAiter running various experiments, you determine that the mechanism for the following reaction is bimolecular. CI Using this information, draw the correct mechanism in the space below. X Explanation Check C Cl OH + CI Add/Remove step Click and drag to start drawing a structure. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Carrow_forward
- Complete the reaction in the fewest number of steps as possible, Draw all intermediates (In the same form as the picture provided) and provide all reagents.arrow_forwardPlease provide steps to work for complete understanding.arrow_forwardPlease provide steps to work for complete understanding.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning