Concept explainers
One way you keep from overheating is by perspiring. BIO Evaporation—a phase change—requires heat, and the heat energy is removed from your body. Evaporation is much like boiling,
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
- A 0.500-m3 container holding 3.00 mol of ozone (O3) is kept at a temperature of 250 K. Assume the molecules have radius r = 2.50 1010 m. What are the a. mean free path and b. mean free time between collisions for an ozone molecule in the container?arrow_forwardA hollow aluminum cylinder 20.0 cm deep has an internal capacity of 2.000 L at 20.0C. It is completely filled with turpentine at 20.0C. The turpentine and the aluminum cylinder are then slowly warmed together to 80.0C. (a) How much turpentine overflows? (b) What is the volume of the turpentine remaining in the cylinder at 80.0C? (c) If the combination with this amount of turpentine is then cooled back to 20.0C, how far below the cylinders rim does the turpentines surface recede?arrow_forwardThe rectangular plate shown in Figure P16.60 has an area Ai equal to w. If the temperature increases by T, each dimension increases according to Equation 16.4, where is the average coefficient of linear expansion. (a) Show that the increase in area is A = 2Ai T. (b) What approximation does this expression assume?arrow_forward
- A spherical shell has inner radius 3.00 cm and outer radius 7.00 cm. It is made of material with thermal conductivity k = 0.800 W/m C. The interior is maintained at temperature 5C and the exterior at 40C. After an interval of time, the shell reaches a steady state with the temperature at each point within it remaining constant in time. (a) Explain why the rate of energy transfer P must be the same through each spherical surface, of radius r, within the shell and must satisfy dTdr=P4kr2 (b) Next, prove that 5dT=P4k0.030.07r2dr where T is in degrees Celsius and r is in meters. (c) Find the rate of energy transfer through the shell. (d) Prove that 5TdT=1.840.03rr2dr where T is in degrees Celsius and r is in meters. (e) Find the temperature within the shell as a function of radius. (f) Find the temperature at r = 5.00 cm, halfway through the shell.arrow_forwardOne way to cool a gas is to let it expand. When a certain gas under a pressure of 5.00 106 Ha at 25.0C is allowed to expand to 3.00 times its original volume, its final pressure is 1.07 106 Pa. (a) What is the initial temperature of the gas in Kelvin? (b) What is the final temperature of the system? (See Section 10.4.)arrow_forwardHow many moles are there in (a) 0.0500 g of N2 gas (M = 28.0 g/mol)? (b) 10.0 g of CO2 gas (M = 44.0 g/mol)? (c) How many molecules are present in each case?arrow_forward
- (a) At what temperature does water boil at an altitude of 1500 m (about 5000 ft) on a day when atmospheric pressure is 8.59104N/m2 ? (b) What about at an altitude of 3000 m (about 10,000 ft) when atmospheric pressure is 7.00104N/m2 ?arrow_forwardAt 24°C, a brass cube has an edge length of 28 cm. What is the increase in the cube's surface area when it is heated from 24°C to 76°C? The linear expansion coefficient of brass is 19 × 10-6 /C°.arrow_forwardOlder railroad tracks in the U.S. are made of 12-m-long pieces of steel. When the tracks are laid, gaps are left between the sections to prevent buckling when the steel thermally expands. If a track is laid at 16°C, how large should the gaps be if the track is not to buckle when the temperature is as high as 50°C?arrow_forward
- A bar of aluminum is 1m long at a temperature of 400K. At what temperature in degrees K is the bar 0.999m in length? Use a an expansion coefficient of 25x10/degC for aluminum. 208K 312K 360K 403K esc 7. 00 2$ 4 %23 2 E R F G S C 36arrow_forwardBuckminsterfullerene, C60, is a large molecule consisting of 60 carbon atoms connected to form a hollow sphere. The diameter of a C60 molecule is about 7 ✕ 10−10 m. It has been hypothesized that C60 molecules might be found in clouds of interstellar dust, which often contain interesting chemical compounds. The temperature of an interstellar dust cloud may be very low, around 3 K. Suppose you are planning to try to detect the presence of C60 in such a cold dust cloud by detecting photons emitted when molecules undergo transitions from one rotational energy state to another.Approximately, what is the highest-numbered rotational level from which you would expect to observe emissions?arrow_forwardYou are using a thin layer of epoxy to bond a Silicon chip to a pure aluminum plate that acts as a heat sink (epoxy layer 0.0200mm). The Silicon chip (k = 149.0 W/(m-K) is 0.200 mm thick, and has dimensions of 25.0mm by 25.0mm. The pure aluminum plate is 0.850cm thick, and has the same dimensions as the Silicon chip. The hot side of the silicon chip is measured to be 62.0°C; the cold side of the pure aluminum plate is measured to be 31.0°C. Assuming steady-state conduction (with the thin layer of epoxy acting as contact resistance, see Table 3.2.) determine the heat transfer rate through the chip. Do not add in an addition resistance due to the thickness of the epoxy layer, this has been incorporated into the contact resistance.arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning