Loose Leaf for Vector Mechanics for Engineers: Statics and Dynamics
Loose Leaf for Vector Mechanics for Engineers: Statics and Dynamics
12th Edition
ISBN: 9781259977206
Author: BEER, Ferdinand P., Johnston Jr., E. Russell, Mazurek, David, Cornwell, Phillip J., SELF, Brian
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 18.1, Problem 18.32P

Determine the impulse exerted on the plate of Prob. 18.31 during the impact by (a) the obstruction at B, (b) the support at A.

18.31 A square plate of side a and mass m supported by a ball-and-socket joint at A is rotating about the y axis with a constant angular velocity ω = ω0j when an obstruction is suddenly introduced at B in the xy plane. Assuming the impact at B to be perfectly plastic (e = 0), determine immediately after the impact (a) the angular velocity of the plate, (b) the velocity of its mass center G.

Chapter 18.1, Problem 18.32P, Determine the impulse exerted on the plate of Prob. 18.31 during the impact by (a) the obstruction

Fig. P18.31

(a)

Expert Solution
Check Mark
To determine

The impulse exerted (FΔt) on the plate during the impact by obstruction at B.

Answer to Problem 18.32P

The impulse exerted (FΔt) on the plate during the impact by obstruction at B is 0.1031maω0_.

Explanation of Solution

Given information:

The mass of the square plate is m.

The side of a square plate is a.

The angular velocity (ω) is ω0j

Assume the impact to be perfectly plastic that is e=0.

Calculation:

Show the diagram of the system as in Figure (1).

Loose Leaf for Vector Mechanics for Engineers: Statics and Dynamics, Chapter 18.1, Problem 18.32P , additional homework tip  1

The length of the diagonal of a square is obtained by multiplying the side with 2.

The expression for the angular velocity in the x axis (ωx) as follows:

ωx=22ω0

Here, ω0 is the initial angular velocity.

The expression for the angular velocity in the y axis (ωy) as follows:

ωy=22ω0

The unit vectors along the x and y axis are represented by i and j.

The expression for the initial angular momentum about the mass center (HG)0 as follows:

(HG)0=I¯xωxi+I¯yωyj (1)

Here, (HG)0 is the initial angular momentum about the mass center, I¯x is the moment of inertia in the x direction and I¯y is the moment of inertia in the y direction.

The expression for the moment of inertia in the x direction (I¯x) as follows:

I¯x=112ma2

Here, m is the mass and a is the side of the square plate.

Due to symmetry, moment of inertia in the x and y axes are the same.

The expression for the angular momentum about z axis (I¯z) as follows:

I¯z=112ma2

Substitute 112ma2 for I¯x, 112ma2 for I¯y, 22ω0 for ωx, and 22ω0 for ωy in Equation (1).

(HG)0=(112ma2)(22ω0)i+(112ma2)(22ω0)j=1242ma2ω0i+1242ma2ω0j (2)

Calculate the angular velocity at B (vB) using the formula:

vB=ω×rB/A

Here, ω is the angular velocity of the rotating plate and rB/A is the distance of B with respect to A.

Substitute ωxi+ωyj+ωzk for ω and aj for rB/A.

vB=(ωxi+ωyj+ωzk)×(aj)

The matrix multiplication for vector product is done.

vB=a(ωzi+ωxk)

The corner B does not rebound after impact. Therefore the velocity of B after impact in the z axis (vB)z is zero. The angular velocity in the x axis (ωx) is also zero.

Calculate the angular velocity about the mass center (v¯) using the formula:

v¯=ω×rG/A

Here, rG/A is the distance of mass center with respect to A.

Substitute ωxi+ωyj+ωzk for ω and 12a(ij) for rG/A.

v¯=(ωxi+ωyj+ωzk)×12a(ij)

Substitute 0 for ωx.

v¯=(ωyj+ωzk)×12a(ij)

The matrix multiplication for vector product is done.

v¯=12a(ωziωzj+ωyk) (3)

The expression for the angular momentum about A as follows:

HA=HG+rG/A×mv¯ (4)

Here, HA is the angular momentum about A and HG is the angular momentum about the mass center.

Calculate the angular momentum about G using the formula:

HG=I¯xωxi+I¯yωyj+I¯zωzk

Substitute 0 for ωx, 112ma2 for I¯y, and 16ma2 for I¯z.

HG=(112ma2)ωyj+(16ma2)ωzk (5)

Substitute (112ma2)ωyj+(16ma2)ωzk for HG, 12a(ij) for rG/A, and 12a(ωziωzjωyk) for v¯ in Equation (4).

HA=[(112ma2)ωyj+(16ma2)ωzk+[12a(ij)×m12a(ωziωzjωyk)]]

The matrix multiplication is done for vector product.

HA=[(112ma2)ωyj+(16ma2)ωzk+14ma2(ωyi+ωyj+2ωzk)]=[14ma2ωyi+112ma2ωyj+14ma2ωyj+16ma2ωzk+12ma2ωzk]=14ma2ωyi+13ma2ωyj+23ma2ωzk (6)

The initial velocity of mass center (v¯0) is zero.

Calculate the initial momentum about A using the relation:

(HA)0=(HG)0+rG/A×mv¯0

Here, (HA)0 is the angular momentum of the mass center before impact.

Substitute 1242ma2ω0i+1242ma2ω0j for (HG)0, 12a(ij) for rG/A, and 0 for v¯0.

(HA)0=1242ma2ω0i+1242ma2ω0j+12a(ij)×0=1242ma2ω0i+1242ma2ω0j (7)

Show the forces acting on the plate as in Figure (2).

Loose Leaf for Vector Mechanics for Engineers: Statics and Dynamics, Chapter 18.1, Problem 18.32P , additional homework tip  2

The expression for the moment about A as follows:

(HA)0+(aj)×(FΔt)k=HA

The matrix multiplication for vector product is done.

(HA)0(aFΔt)i=HA

Substitute equation (6) and equation (7).

[1242ma2ω0i+1242ma2ω0j(aFΔt)i]=[14ma2ωyi+13ma2ωyj+23ma2ωzk] (8)

Equate i components from equation (8).

1242ma2ω0(aFΔt)=14ma2ωy (9)

Equate j components from Equation (8).

1242ma2ω0=13ma2ωyωy=3242ma2ω0ma2ωy=182ω0

Equate k components from Equation (8).

0=23ma2ωzωz=0

Substitute 182ω0 for ωy in Equation (9).

1242ma2ω0(aFΔt)=14ma2182ω0aFΔt=1242ma2ω0+1322ma2ω0aFΔt=7962ma2ω0FΔt=0.1031maω0

Therefore, the impulse exerted (FΔt) on the plate during the impact by obstruction at B is 0.1031maω0_.

(b)

Expert Solution
Check Mark
To determine

Find the impulse exerted A(Δt) on the plate during the impact by support at B.

Answer to Problem 18.32P

The impulse exerted A(Δt) on the plate during the impact by support at B is 0.01473maω0k_.

Explanation of Solution

Given information:

The mass of the square plate is m.

The side of a square plate is a.

The angular velocity (ω) is ω0j

Assume the impact to be perfectly plastic that is e=0.

Calculation:

Calculate the velocity along the x, y and z axes (v¯) using the formula:

Consider the Equation (3).

v¯=12a(ωziωzj+ωyk)

Substitute 0 for ωz.

v¯=12a((0)i(0)jωyk)=12aωyk

Substitute 182ω0 for ωy.

v¯=12a(182ω0)k=1162aω0k=0.0884aω0k

The expression for the linear momentum of the system as follows:

mv¯0+A(Δt)+F(Δt)k=mv¯

Substitute 0 for v¯0, 7962ma2ω0 for F(Δt), and 1162aω0k for v¯.

m(0)+A(Δt)+7962ma2ω0k=1162maω0kA(Δt)=1162maω0k7962ma2ω0kA(Δt)=1962maω0kA(Δt)=0.01473maω0k

Therefore, the impulse exerted A(Δt) on the plate during the impact by support at B is 0.01473maω0k_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A square plate of side a and mass m supported by a ball-and-socket joint at A is rotating about the y axis with a constant angular velocity ω = ω 0 j when an obstruction is suddenly introduced at B in the xy plane. Assuming the impact at B to be perfectly plastic (e = 0), determine immediately after the impact (a ) the angular velocity of the plate, (b ) the velocity of its mass center G.
Problem 17.76 The 19.2-kg roll of paper has a radius of gyration k = 120 mm about an axis passing through point A. It is pin supported at both ends by two brackets AB as shown in (Eigure 1) The roll rests on the floor, for which the coefficient of kinetic friction is 0.2. A horizontal force F-60 N is applied to the end of the paper. Figure 400 mm 300 mm/ C <1 of 1 Part A Determine the initial angular acceleration of the roll as the paper unrolls Express your answer in radians per second squared to three significant figures. Enter positive value if the angular acceleration is clockwise and negative value if the angular acceleration is counterclockwise. VAE Ivec 3 a= 7.54 a Previous Answers Request Answer C QMNC ? Submit J * Incorrect; Try Again; 3 attempts remaining rad/s²
Disk A has a mass mA = 3.5 kg, a radius rA = 255 mm, and an initial angular velocity wOA = 300 rpm clockwise. Disk B has a mass mB = 1.8 kg, a radius rB = 150 mm, and is at rest when it comes into contact with disk A. Knowing that µk : 0.33 between the disks and neglecting rolling friction, determine the moment of reaction on the support at C, in N-m. = 00 B A C TA TB

Chapter 18 Solutions

Loose Leaf for Vector Mechanics for Engineers: Statics and Dynamics

Ch. 18.1 - Prob. 18.12PCh. 18.1 - Prob. 18.13PCh. 18.1 - Two L-shaped arms each have a mass of 5 kg and are...Ch. 18.1 - For the assembly of Prob. 18.15, determine (a) the...Ch. 18.1 - Prob. 18.17PCh. 18.1 - Determine the angular momentum of the shaft of...Ch. 18.1 - Prob. 18.20PCh. 18.1 - Prob. 18.21PCh. 18.1 - Prob. 18.22PCh. 18.1 - Prob. 18.23PCh. 18.1 - Prob. 18.24PCh. 18.1 - Prob. 18.25PCh. 18.1 - Prob. 18.26PCh. 18.1 - Prob. 18.27PCh. 18.1 - Prob. 18.28PCh. 18.1 - A circular plate of mass m is falling with a...Ch. 18.1 - Prob. 18.30PCh. 18.1 - Prob. 18.31PCh. 18.1 - Determine the impulse exerted on the plate of...Ch. 18.1 - The coordinate axes shown represent the principal...Ch. 18.1 - Prob. 18.34PCh. 18.1 - Prob. 18.37PCh. 18.1 - Prob. 18.38PCh. 18.1 - Prob. 18.39PCh. 18.1 - Prob. 18.40PCh. 18.1 - Prob. 18.41PCh. 18.1 - Prob. 18.42PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Determine the kinetic energy of the solid...Ch. 18.1 - Prob. 18.45PCh. 18.1 - Determine the kinetic energy of the disk of Prob....Ch. 18.1 - Determine the kinetic energy of the assembly of...Ch. 18.1 - Determine the kinetic energy of the shaft of Prob....Ch. 18.1 - Prob. 18.49PCh. 18.1 - Prob. 18.50PCh. 18.1 - Determine the kinetic energy lost when edge C of...Ch. 18.1 - Prob. 18.52PCh. 18.1 - Prob. 18.53PCh. 18.1 - Determine the kinetic energy of the space probe of...Ch. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.56PCh. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.58PCh. 18.2 - Prob. 18.59PCh. 18.2 - Determine the rate of change HG of the angular...Ch. 18.2 - Prob. 18.61PCh. 18.2 - Determine the rate of change HD of the angular...Ch. 18.2 - Prob. 18.63PCh. 18.2 - Prob. 18.64PCh. 18.2 - A slender, uniform rod AB of mass m and a vertical...Ch. 18.2 - Prob. 18.66PCh. 18.2 - The assembly shown consists of pieces of sheet...Ch. 18.2 - The 8-kg shaft shown has a uniform cross-section....Ch. 18.2 - Prob. 18.69PCh. 18.2 - Prob. 18.70PCh. 18.2 - Prob. 18.71PCh. 18.2 - Knowing that the plate of Prob. 18.66 is initially...Ch. 18.2 - Prob. 18.73PCh. 18.2 - The shaft of Prob. 18.68 is initially at rest ( =...Ch. 18.2 - The assembly shown weighs 12 lb and consists of 4...Ch. 18.2 - Prob. 18.76PCh. 18.2 - Prob. 18.79PCh. 18.2 - Prob. 18.80PCh. 18.2 - Prob. 18.81PCh. 18.2 - Prob. 18.82PCh. 18.2 - The uniform, thin 5-lb disk spins at a constant...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - A model of a type of crusher is shown. A disk of...Ch. 18.2 - Prob. 18.86PCh. 18.2 - Prob. 18.87PCh. 18.2 - The 2-lb gear A is constrained to roll on the...Ch. 18.2 - Prob. 18.89PCh. 18.2 - Prob. 18.90PCh. 18.2 - 18.90 and 18.91The slender rod AB is attached by a...Ch. 18.2 - The essential structure of a certain type of...Ch. 18.2 - The 10-oz disk shown spins at the rate 1 = 750...Ch. 18.2 - Prob. 18.94PCh. 18.2 - Prob. 18.95PCh. 18.2 - Two disks each have a mass of 5 kg and a radius of...Ch. 18.2 - Prob. 18.97PCh. 18.2 - Prob. 18.98PCh. 18.2 - A thin disk of mass m = 4 kg rotates with an...Ch. 18.2 - Prob. 18.101PCh. 18.2 - Prob. 18.102PCh. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - A 2.5-kg homogeneous disk of radius 80 mm rotates...Ch. 18.2 - For the disk of Prob. 18.99, determine (a) the...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - A uniform thin disk with a 6-in. diameter is...Ch. 18.3 - Prob. 18.109PCh. 18.3 - The top shown is supported at the fixed point O...Ch. 18.3 - Prob. 18.111PCh. 18.3 - Prob. 18.112PCh. 18.3 - Prob. 18.113PCh. 18.3 - A homogeneous cone with a height of h = 12 in. and...Ch. 18.3 - Prob. 18.115PCh. 18.3 - Prob. 18.116PCh. 18.3 - Prob. 18.117PCh. 18.3 - The propeller of an air boat rotates at 1800 rpm....Ch. 18.3 - Prob. 18.119PCh. 18.3 - Prob. 18.120PCh. 18.3 - Prob. 18.121PCh. 18.3 - Prob. 18.122PCh. 18.3 - Prob. 18.123PCh. 18.3 - A coin is tossed into the air. It is observed to...Ch. 18.3 - Prob. 18.125PCh. 18.3 - Prob. 18.126PCh. 18.3 - Prob. 18.127PCh. 18.3 - Prob. 18.128PCh. 18.3 - Prob. 18.129PCh. 18.3 - Prob. 18.130PCh. 18.3 - Prob. 18.131PCh. 18.3 - Prob. 18.132PCh. 18.3 - Prob. 18.133PCh. 18.3 - Prob. 18.134PCh. 18.3 - Prob. 18.135PCh. 18.3 - A homogeneous disk with a radius of 9 in. is...Ch. 18.3 - The top shown is supported at the fixed point O....Ch. 18.3 - Prob. 18.138PCh. 18.3 - Prob. 18.139PCh. 18.3 - Prob. 18.140PCh. 18.3 - Prob. 18.141PCh. 18.3 - Prob. 18.142PCh. 18.3 - Consider a rigid body of arbitrary shape that is...Ch. 18.3 - Prob. 18.144PCh. 18.3 - Prob. 18.145PCh. 18 - Three 25-lb rotor disks are attached to a shaft...Ch. 18 - Prob. 18.148RPCh. 18 - Prob. 18.149RPCh. 18 - A uniform rod of mass m and length 5a is bent into...Ch. 18 - Prob. 18.151RPCh. 18 - Prob. 18.152RPCh. 18 - Prob. 18.153RPCh. 18 - Prob. 18.154RPCh. 18 - Prob. 18.155RPCh. 18 - The space capsule has no angular velocity when the...Ch. 18 - A homogeneous rectangular plate of mass m and...Ch. 18 - The essential features of the gyrocompass are...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY