a.
To Determine: The height of the vehicle when it lands on the ramp.
The height of the vehicle when it lands on the ramp is
Given:
The equation
Jumping distance from the ground
Horizontal distance
Height
Calculation:
Find the height
Consider the diagram,
The diagram shows that a stunt motorcycle jumps from one ramp to another ramp 20 feet above the ground.
Jumps between the ramps are modelled by,
Upon landing on the ramp, the motorcycle's height is
So, the height of the vehicle when it lands on the ramp is
b.
To Determine: The distance
The distance
Given:
The equation
Jumping distance from the ground
Horizontal distance
Height
Calculation:
Find the distance between the ramps
Since, from part
Cancel the similar term:
Move 4 to the left of
Subtract
Factor
If any individual factor on the left side of the equation is equal to
Eliminate the value
So, the distance
c.
To Determine: The horizontal distance
The horizontal distance
Given:
The equation
Jumping distance from the ground
Horizontal distance
Height
Calculation:
Find the horizontal distance
Rewrite the function
The vertex form of a quadratic function is
Here
Since,
d.
To Determine: The vehicle's maximum height
The vehicle's maximum height
Given:
The equation
Jumping distance from the ground
Horizontal distance
Height
Calculation:
Find the vehicle's maximum height
The vertex form of a quadratic function is
Here
From the equation from part
Since,
above the ground is
Chapter 1 Solutions
EBK ALGEBRA 2
- I want a mathematical relationship with all the details, not explanations and definitionsarrow_forward4 sinx cos2x+4 cos x sin2x-1=0arrow_forwardFor the matrix A, find (if possible) a nonsingular matrix P such that P-1AP is diagonal. (If not possible, enter IMPOSSIBLE.) 6 -2 -[47] A = -3 1 P = Verify that P-1AP is a diagonal matrix with the eigenvalues on the main diagonal. P-1AP =arrow_forward
- (e) Without using a membership table, show that (A N B) U (A N B) = A. State all the rules used.arrow_forwardThe function r has vertical asymptotes x =____________ (smaller value) and x = __________ (larger value)arrow_forwardProblem 1. 1.1. In each of the below, find a complete list of subgroups of the group G and write down their orders. a) The group G = Z/48Z b) The group G of rotations in D14. c) The group G = Z13 of 13-th roots of unity in C. 1.2. Find all elements x of the group G from 1.1 b) which generate G. 1.3. Let H = [[20]) ℃ Z/48Z. Using only order, determine which of the subgroups from your solution to 1.1 a) H coincides with.arrow_forward
- my teacher told me the answer was 4a⁷b⁶ because of the product of a power how can I tell the truth us there any laws in math please provide the law to correct her tyarrow_forwarda=1 b=41)Find the vector and parametric scalar equations of the line L. Show that Q does not lieon L. 2)Without performing any numerical calculations, express d in terms of sin(θ) and |P Q| andhence show that d = |P Q × v(v with a hat)|. Proceed to use your points P and Q and the vector v(hat) to find d. 3)Find the point R such that PR =(P Q · v(hat)/|v(hat)| 2⃗ ) * v(hat). Confirm that R lies on the line L. Interpret the vector P R. Finally, verify that d = |RQ|.arrow_forwardDirections: Use your knowledge of properties of quadratic equations to answer each question. Show all work and label your answers with appropriate units. Round any decimals to the nearest hundredths place. 1. The hypotenuse of a right triangle is 5 centimeters longer than one leg and 10 centimeters longer than the other leg. What are the dimensions of the triangle? 2. The profit of a cell phone manufacturer is found by the function y = -2x²+ 108x+75, where x is the price of the cell phone. At what price should the manufacturer sell the phone to maximize its profits? What will the maximum profit be? 3. A farmer wants to build a fence around a rectangular area of his farm with one side of the region against his barn. He has 76 feet of fencing to use for the three remaining sides. What dimensions will make the largest area for the region? 4. A 13-foot ladder is leaning against a building, forming a right triangle. The height where the ladder touches the building is 7 feet more than the…arrow_forward
- Consider the linear system: x12x2ax3 - 3x1 + x2 3x3 -3x14x2+7x3 a) For what value of a we can not solve the above system using Cramer's Rule? a b) If we take a 3 what will be the value of x₁? x1 = == 4. =-7 ==arrow_forwardIf u and v are any elements in vector space V and u v is not in V then V is not closed under the operation . ○ True ○ Falsearrow_forwardConsider the linear system: x1 + 2x2 + 3x3 3x1 + 2x2 + x3 = 17 = 11 x1 - 5x2 + x3 =-5 Let A be the coefficient matrix of the given system and using Cramer's Rule x = • x1 = = det(A2) = ÷ det(Ai) det(A)arrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education