Delmar's Standard Textbook Of Electricity
7th Edition
ISBN: 9781337900348
Author: Stephen L. Herman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 18, Problem 6RQ
In the circuit shown in Figure 18-1, the resistor has a current flow of 6.5 A and the inductor has a current flow of 8 A. What is the total current in this circuit?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Homework: ANOVA Table for followed design
Dr
B
AB
-1
-1
1
(15.18,12)
1
-1
-1
(45.48.51)
-1
1
-1
(25,28,19)
1
1
(75,75,81)
"I need the solution along with proof of the
correct choice by the expert."
choose the correct answer
1. The maximum break down strength of air at 76 cm mercury pressure and temperature of 25 °C is......
a. 30 V/cm
b. 30 kV/cm
c. 300 kV/cm
d. Non of them
2. The installed capacity of a power station must be not ....... than the maximum demand.
b. equal
c. more
a. Less
3. Area under the daily load curve divided by 24 hour gives daily
d. Non of them
a. average load in kW. b. maximum demand in kW. c. units generated in kwh. d. Non of them
4. In thermal power station, 5 kwh need to burn fuel has
a. 860 k.calorific. b. 1500 k.calorific c. 4300 k.calorific d. Non of them.
5. Francis and Kaplan turbines are used for... heads.
a. medium and high b. medium and low c. medium only.
d. High only
6. For photo voltage cell, Fill factor is
a.
Umpimp
Uscise
b.
Vscisc
Vmpimp
c. Vmpimp
d. Vscisc
7. Power available from wind mill is
a. PA V²
b.
-AV²
c. PA V³
d. pA V³
2p
"I need the solution along with proof of the
correct choice by the expert."
b. Less than 33Kv
c. Greater than 33Kv
stored as
Pick up the correct option for five only (with the solution if required).
1. Suspension insulator used for transmission and distribution of electric power at
a. Up to 33Kv
2. The excess energy from wind power turbine can be
chemical energy b. mechanical energy
3. Reaction turbines are used for
a. High heads
a.
b. medium heads
4. More efficient plants are used as
d. Not of all
c. compressed air d. All of them
c. low heads d. low and medium heads.
a. base load stations b. peak load stations c. Average load d. All of
them
5. Alignment of the blade angle with respect to the wind direction to get maximum wind
energy
can be achieved with the help of
a. Fixed gears
b. Yaw motor gear
6. For photo voltage cell, Fill factor using the data:
b. 0.59
c. 0.20
c. Control systems
d. Blades
P-15 W, V-18 V, I-4 A. is
d. 0.98
a. 0.65
7. A commercial load is connected to the grid…
Chapter 18 Solutions
Delmar's Standard Textbook Of Electricity
Ch. 18 - 1. When an inductor and a resistor are connected...Ch. 18 - 2. An inductor and resistor are connected in...Ch. 18 - 3. What is the impedance of the circuit in...Ch. 18 - 4. What is the power factor of the circuit in...Ch. 18 - How many degrees out of phase are the current and...Ch. 18 - 6. In the circuit shown in Figure 18-1, the...Ch. 18 - 7. A resistor and an inductor are connected in...Ch. 18 - The R-L parallel circuit shown in Figure 18-1 has...Ch. 18 - The R-L parallel circuit shown in Figure 18-1 has...Ch. 18 - How many degrees out of phase are the total...
Ch. 18 - Incandescent lighting of 500 W is connected in...Ch. 18 - You are working on a residential heat pump. The...Ch. 18 - Assume that the circuit shown in Figure 18-1 is...Ch. 18 - Assume that the current flow through the resistor,...Ch. 18 - Assume that the circuit in Figure 18-1 has an...Ch. 18 - Assume that the circuit in Figure 18-1 has a power...Ch. 18 - In an R-L parallel circuit, R=240 and XL=360. Find...Ch. 18 - In an R-L parallel circuit, IT=0.25 amps, IR=0.125...Ch. 18 - In an R-L parallel circuit, ET=120 volts,...Ch. 18 - In an R-L parallel circuit, ET=48 volts, IT=0.25...Ch. 18 - In an R-L parallel circuit, ET=240 volts, R=560 R...Ch. 18 - In an R-L parallel circuit, ET=240 volts, R=560,...Ch. 18 - In an R-L parallel circuit, ET=208 volts, R=2.4k,...Ch. 18 - In an R-L parallel circuit, ET=480 volts, R=16,...Ch. 18 - In an R-L parallel circuit, IT=1.25 amps, R=1.2k,...Ch. 18 - In an R-L parallel circuit, true power =4.6 watts...Ch. 18 - An R-L parallel circuit is connected to 240 volts...Ch. 18 - An R-L parallel circuit has an applied voltage of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Need a aolarrow_forwardNeed correct and step by step handwritten solution. DO NOT USE CHATGPT or other AI tool otherwise downvote and reportarrow_forwardQ1: If the input x[n] = [001111] is applied to a discrete-time LTI system of impulse response h[n] = [321]. Using z-transform, find the output y[n] of the system.arrow_forward
- Q1: If the input x[n] = [001111] is applied to a discrete-time LTI system of impulse response h[n]= = [321]. Find the output y[n] of the system. a. Using analytical technique. b. Using linear convolution technique.arrow_forwardDon't use ai to answer I will report you answerarrow_forwardAn antenna circuit is connected to a 4/4 transmission line with a characteristic impedance 5052. The transmission line is terminated with an antenna having a load impedance Z=60+ j4012. The input voltage at the source is V, 100 V RMS Vy 1. Calculate the input impedance seen by the source at the antenna connection point. 2. Determine the current flowing into the antenna. 3. Verify the supplied power from the source. 4. Calculate the radiated power P 5. Find the power lost in the systemarrow_forward
- A resonant half wavelength dipole is made of copper (G= 5.7 ×10 S/m) wire. Determine the conduction-dielectric (radiation) efficiency e of the dipole antenna, if the operating frequency is = 100 MHz, the radi of the wire b is 3x102arrow_forward"Detail the solution to the question with an explanation of the integration." A diploe with a total loss resistance of 122, is connected to generator whose internal impedance is 50+j25, the peak voltage of generator is 2 V and the impedance of the dipole excluding the loss resistance is 73+j42.5. All antenna and generator are connected via 50-92 2/4 long lossless transmission line. (a) Draw the equivalent circuit (b) Determine the power supplied by the generator (c) Determine the power radiated by the antennaarrow_forwardFor an X-band (8.2-12.4) GHz rectangular horn antenna with aperture dimensions of 5.5cm and 7.4cm. find its maximum effective aperture (in cm2) when its gain (over isotropic) is 1- 14.8dB at 8.2 GHz 2-16.5dB at 10.3GHz 3- 18dB at 12.4GHzarrow_forward
- Find the directivity in dB and the effective aperture for the following normalized radiation intensity (take f=100 MHz): U(0,0)=0.342csc0 0≤0≤20 20 ≤0≤60 60 ≤0≤18arrow_forwardAn antenna with a radiation impedance of 75+j10 ohm, with 10 ohm loss resistance, is connected to a generator with open-circuit voltage of 12 v and an internal impedance of 20 ohms via a 2/4-long transmission line with characteristic impedance of 75 ohms. (a) Draw the equivalent circuit (b) Determine the power supplied by the generator. (c) Determine the power radiated by the antenna. (d) Determine the reflection coefficient at the antenna terminals.arrow_forwardcircuit analysis using superposition what is value of iarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningElectricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
Inductors Explained - The basics how inductors work working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=KSylo01n5FY;License: Standard Youtube License