(a)
The final temperature, volume, work done and heat absorbed if the expansion is isothermal.
(a)
Answer to Problem 69P
The final temperature, volume, work done and heat absorbed are
Explanation of Solution
Given:
The initial pressure is
The final pressure is
The initial temperature is
Formula used:
The expression for initial volume is given by,
The expression for final volume is given by,
The expression for work done is given by,
The expression for heat absorbed is given by,
Calculation:
The temperature remains same for an isothermal expansion.
The initial volume is calculated as,
The final volume is calculated as,
The work done by gas is calculated as,
The heat absorbed is calculated as,
Conclusion:
Therefore, the final temperature, volume, work done and heat absorbed are
(b)
The final temperature, volume, work done and heat absorbed if the expansion is adiabatic.
(b)
Answer to Problem 69P
The final temperature, volume, work done and heat absorbed are
Explanation of Solution
Formula used:
The expression for final temperature is given by,
The expression for final volume is given by,
The expression for work done is given by,
Calculation:
The final volume is calculated as,
The final temperature is calculated as,
The work done by gas is calculated as,
The heat absorbed is zero in case of adiabatic process.
Conclusion:
Therefore, the final temperature, volume, work done and heat absorbed are
Want to see more full solutions like this?
Chapter 18 Solutions
Physics for Scientists and Engineers, Vol. 1
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning