Concept explainers
(a)
The final temperature of the system.
(a)
Answer to Problem 41P
The final temperature of the system is
Explanation of Solution
Given:
The mass of aluminium calorimeter is
The mass of water is
The mass of ice piece is
Formula used:
The expression for the energy available to melt the ice is given as,
The expression for the energy required to warm and melt the ice is given as,
Here,
The expression for the law of conservation of energy is given as,
Calculation:
The energy available to melt the ice is calculated as,
The energy required to warm and melt the ice is calculated as,
By the law of conservation of energy, the final temperature is calculated as,
Conclusion:
Therefore, the final temperature of the system is
(b)
The ice left in the system after reaches the equilibrium state.
(b)
Answer to Problem 41P
The ice left in the system after reaches the equilibrium state is
Explanation of Solution
Given:
The mass of ice piece is
Formula used:
The expression for the mass of ice is given as,
The value of
The value of
Calculation:
The value of
The value of
The remaining mass of ice is calculated as
Conclusion:
Therefore, the ice left in the system after reaches the equilibrium state is
(c)
The change if both pieces of ice were mix at the same time.
(c)
Explanation of Solution
Introduction:
Two bodies are said to be in thermal equilibrium if they are in a close connection that permits either to obtain energy from the other. Still, nevertheless, no net energy is transferred between them. During the process of reaching thermal equilibrium, heat, which is a form of energy, is transferred between the objects.
If both pieces of ice were mix at the same time, then there is no change as the initial and final conditions in equilibrium state are identical.
Conclusion:
Therefore, there is no change at the time of mixing of both ice pieces.
Want to see more full solutions like this?
Chapter 18 Solutions
Physics for Scientists and Engineers, Vol. 1
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forward
- The 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forwardThe members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forwardpls help on botharrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning